Solutions of Savchenko Problems in Physics

Aliaksandr Melnichenka
October 2023

Statement

$1.3.6.$ The gun is fired at an angle $\varphi$ to the horizon. Initial velocity of the projectile $v.$ The ground surface is horizontal. Find:
a) the horizontal and vertical projections of velocity as a function of time;
b) the dependence of the $x$ and $y$ coordinates on time;
c) the trajectory equation, i.e. the dependence of $y$ on $x$;
d) the flight time, the highest altitude and range of the projectile.

Solution

a) Since the external force (gravitational force) acts only in the vertical direction, the horizontal component of the velocity $v_x$ remains unchanged $$ v_x = v \cdot \cos{\varphi}\;(1) $$ And the vertical component depends as a function of time $$ v_y(t) = v \cdot \sin{\varphi} - gt\;(2) $$ b) Based on the obtained expressions for the speed $(1)$ and $(2)$, we obtain the dependence of the horizontal and vertical coordinates on time, respectively: $$ y(t) = vt \cdot \sin{\varphi} - \frac{gt^2}{2}\;(3) $$ $$ x(t) = vt \cdot \cos{\varphi}\;(4) $$ c) From $(4)$ we express $t$: $$ t = \frac{x}{v \cdot \cos{\varphi}} \;(5) $$ And we substitute in $(3)$ $$ y(x) = x \tan \varphi-\frac{gx^2}{2v^2\cos^2\varphi}\;(6) $$ d) The maximum height is achieved when the velocity is directed horizontally $(v_y = 0)$: $$ t_0 = \frac{v\sin\varphi}{g}\;(7) $$ Substituting $(7)$ into $(3)$: $$ H = \frac{v^2}{2g}\operatorname{sin}^2\varphi\;(8) $$ From the symmetry of the parabola, the time after which the body will again be on the ground$(y = 0)$, we find as: $$ T = 2t_0 = \frac{2v\sin\varphi}{g}\;(9) $$ Substituting $(9)$ into $(4)$: $$ L=\frac{v^2}{g}\operatorname{sin}2\varphi\;(10) $$

Answer

a) $v_x= v\cos\varphi, v_y = v\sin\varphi-gt$
b) $x = (v\cos\varphi)t, y = (v\sin{\varphi})t - gt^2/2$
c) $y = x \tan \varphi-\frac{gx^2}{2v^2\cos^2\varphi} =x\operatorname{tg}\varphi-\frac{gx^2}{2v^2}(\operatorname{tg}^2\varphi+1)$
d) $T=\frac{2v}{g}\operatorname{sin}\varphi, H=\frac{v^2}{2g}\operatorname{sin}^2\varphi, L=\frac{v^2}{g}\operatorname{sin}2\varphi$