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Kinematics

1.1 Constant Speed Motion
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v =200
v=0.7 kTm, southeast.

v =3 ;1 m from the ceiling and 2 m from the
side wall.

At a distance of 1.15 m from counter A.

A0 = L¥2ete 1o = tp — 5(ta —tp).
-1

v = et

=

a. Attt < % the boundary of the region is a cone

with the apex at distance vt from the end of the
rod, passing into a sphere of radius ut touching
it. At¢ > % - spheres with centers at the end of
the rod and radius ut and u(t— 1) with a tangent
conic surface. b*. cosa = .

From the region bounded by the angle o =
2arcsin( ) with vertex at point A, whose bisector
is the highway.

cl

V= Tr—car:

v
sin «

u =
See figure

The ordinate and abscissa of the
intersection point of the graphs z; = vt
and 2o = a + @ give the time and

coordinate of the point of particle collision:

¢ = 2avh) o — 90 — oty
See Fig.; b) vqp = 0¢) vgp =1 7
See Fig.



1.1.17

1.1.18
1.1.19

1.1.20

1.1.21

1.1.22

1.1.23

See Fig. (a) The return of the beam along the
z-coordinate takes a very short time, so that
few electrons fall per unit length of the

luminescent screen surface.
See Fig. b) for 7,7, = 2, where m and n are
Y n?

any integers.

o ) sin a4-v/c2 —v2 cos?
T = 2lrU’l S (] > C V< COsS” &
8 = 2a. In the direction opposite to the initial
one.
tgp = %m“ where m and n are any integers.
(*C,m Cyv Cz)’ (7613 7Cy7 702)-
At (r27h2)
T =\ (®-n?)

See Fig. Zero at the walls. Highest at any loca-
tion at a distance from the walls, greater than
2R, and equal to % at L > 4R; anywhere at
a distance from the walls greater than L — 2R,
and equal to one at 4R > L > 2R.

1.2 Variable speed movement
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1.2.2
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1.2.7

1.2.8

1.2.9

1.2.10

1.2.11

1.2.12

1.2.13
1.2.14

2, R—
Vav = WUR+7‘

t=12s,x=24m

is directed along the interface.

’U()(t t(])
L = vt + BT

Any graph with a coordinate change over the
specified time of 20 m and with the greatest
”slope” of the tangent is 15 **.

z >t —1)
Xr = (%)’Uoto

The average speed is greater than the initial
speed, and the final speed is zero.

v=+La
_ /N
UV=Aw
t=1=
q
7771)32521592(1 1 q
a.v—ios bU—§ “hi
.3
q =126 <~
a =277 73; 28 times.

’U1:43%,U2:423%

1.2.15

1.2.16
1.2.17

1.2.18
1.2.19

1.2.20

1.2.21

See Figure; v = 600 *. From 6 to 6.9km.
x = 6.9km. Check the equality of the areas in
the graph of the acceleration above and below

the t-axis
4 and 16

See Fig. The ratio of the acceleration

modules is 2.
See Fig.
v=0.72
t=(24+v2)to

‘= (2t1ta—t3+t32)
[2(t1—t2)]

1.3 Motion in the field of gravity.

1.31

1.3.2

1.3.3

1.34
1.3.5

1.3.6

1.3.7

1.3.8

1.3.9
1.3.10

1.3.11
1.3.12

1.3.13

1.3.14

Curvilinear motion

At
2

a. t = %. b. On a circle of diameter g with

upper point A.

At an angle of £ to the vertical.

vp = /v + 2gh.

t= g(simp — cos ptga)

a) v, = UCOS(p,Uy =wvsing — gt. b) x = (vcos p)t,
y = (vsinp)t—%-. o)y = xtgp— ﬁ = xtgp—
%(tg%p +1). d) T = szmp,H = %sin2<p,L =
2,
%szNggo
L=+2%
g
L= 22085 (198 — ¢
~ g cosa 9 gOé)
v=+/L(a+g).
H= %(v cos a — u)tgla.
_ 202
L= g(tgB+tga)"
m = Tkg.
2 \/7
a)tg<,0 +y/v*—2gviy—g2z? b) _L_%.
C)UnLin = \/g(y + V IQ + 312)
2
Lyrel = (Z)Z(l):aﬁ) yYrel = (7) sin @)A — st gAt -t

where t is time elapsed after the second body
took off. Relative velocity is constant and ver-
tically downward and is equal modulo to gAt.



1.3.15 v = 2;5293, where n is any natural number; at 1.4.6 Vpaz = 0V3.
«a = 0 the velocity can be any modulo. 147 t — 2Lp1;i;fzzsin2 o Along the trace.
_ 20 < .
1.3.16 t = ?ctgoz at vcosa < /2¢lsina; 14.8 a) Av = —2(v +u). b) Av = —2(v — w). (The
W _ ~ 2gltga . projection on the direction of the initial is con-
t = gctga(l— /1 = J700) at veos o > /2glsina sidered positive).
1.3.17 vy = gAtsina, vy = gAt cos a. 149 a)u = v. b) u = Vo2 + dvwcosa + 4w2. ¢) u =
_ 9Ty v2 + 4vw cos a cos B + 4w? cos? 3
1.3.18 R = LL. v
_ v24u?
1.3.19 v = \/g2(H — h) + L]. 1410 v =\/om -
1.3.20 ve = 1675 ™ e = 0,034 2 _ o [ur | 2n
h c? 1411 t=2 P2 + g
vy =838 & q; =0,017 3.
1.4.12 The projection of velocity in the horizontal direc-
1.3.21 v =+/ggr = SkTm. tion v, = v — 2u ; the projection of velocityin the
1899 oo (4(+2ﬂ2[§v2 vertical direction v, = %.
1.4.13 n = itve)
1.3.23 See Fig. "= TeR)
1.4.14 sina = 2.
1.3.24 At(*2) — 102 2;at5 - 10~ °rad; SIa=y
w=5-10"3 ¢, 1.4.15 u = vV/3.
1.3.25 a = /K2 4 kit 1.4.16 In the new frame of reference, the geometry of
" the beams and, hence, the area of their intersec-
1.3.26 v = /gr. tion are the same are the same as before. The ve-
locity of the particles is not necessarily directed
1.3.27 v = V/5gR. along the beam.
1.3.28 27.5 and 42.4 km; 18.3 and 52 km; el )
1.4.17 In 4/1 + % times will change.
0.2 and 73.4 km. v
1.3.99 4 — (%) cos? v, 1.4.18 a = 60°, 1 = 200v/3 ~ 345 m.
1.3.30 ¢t = (%)\/9Sin2 a—8atsina >,/3;
1.5 Motion with links
t=0atsina < \/g.
1.5.1 v = 21}A.
. . 1.5.2 vy =wR; vy =w(R —1).
1.4 Galileo’s transformation
1.5.3 u = vV/3.
1.4.1 In the frame of reference of the second ship -
1.5.4 a = gctga
the first ship moves in a straight line along
. 1.5.5 See Fig.
the vector v; — vo. The perpendicular dropped
on this straight line from the location of the 1.5.6 (-2,8;3,1)
second ship will be the shortest distance. 1.5.7 a. usg = % b.u; = Vu2 — 02
1.4.2 See Fig.
ce g 1.5.8 See Fig. a = (;’%—22)1"; rg = (RtTf, T = @.
1.4.3 Exactly the same as the observer moving with R .
particle A. 159 u= Reosa—r> Y = Rcosa—r’
to the right for cosa > &=,
1.4.4 See Fig. & R
to the left for cosa < .
1.4.5 a. The bucket must be tilted in the direction of

the movement of the platform at an angle ¢ to 1.5.10

the vertical: tgp = . b.u = 10v/32.

The trajectory of the wheel rim point runs

along the diameter of the cylinder.
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2.1

211

21.2

a. One turn. b. For 4 min.
a = 4w?R.
U = v cosa.
At the center of the square in time ¢ = 2.
See Fig.; vg = _ 2vat
v UB VL2422
u = v2t
Vi rEere
_ (vsin®a)
w="p
/ w
W = == a~
2sin?(§)
v = uR
VRE-RZ"
d= 71'(R2—r2)

(vt) -

DYNAMICS

Newton’s Laws

Since the sum of the external forces is zero, the
center of mass of the baron-horse system is at
rest (according to the condition of the problem,
the baron is stuck in a swamp).

The mechanical system, which includes the
baron-horse, will be considered closed. There
are no external forces inside a closed mechanical
system, the interaction is caused only between
the bodies of the baron-horse system, more pre-
cisely by the hand and the pigtail on the baron’s
head.

According to Newton’s third law, forces arise
in pairs, equal in modulus, directed along one
straight line and opposite in direction. Thus, the
geometric sum of the internal forces and the mo-
ments of these forces relative to the fixed center
is zero. The Baron violated Newton’s third law.

According to Newton’s second law,

mad =mg + N + F;p

In projection to the direction of motion
ma = Fpp(1)

To find the friction force, we need to determine
the acceleration of the body. Let’s propose one of
the methods. The distance traveled by the body
to a stop is

— 4 v+0.4 __ w
| = Vgp; t = 20 ¢ — oy

Acceleration of the body

2.1.3

0 = vy — at, from where vy = at

Then
=% = “—52, from where a = 2
Making a substitution in (1)
Fmp = QZ;LZ
Calculations

_ 2:0,1kg-20m __
Fryyy = 20288200 — 16N

Interestingly, acceleration can be obtained even
easier when using the method from the oppo-
site” in solving the problem, if from the stop
point, accelerate the puck back to the stick, then

I =%-,and a = 2[t2
Answer:

F =22 —0,16N.

at?

The electric force informs the electron accelera-
tion

o = Fa
Me

where a = =" because vy, = 0 — the electron
flies perpendicular to the screen, then

vy _ Fel and Fel _ mevy(l)

t me t

Here v, is the vertical component of the veloc-
ity that the electron will acquire when leaving
the plates. To determine the electric force, it is
necessary to find the vertical velocity and the
time of movement of the electron before depar-
ture from the plates. The velocity is determined
from the condition

:ﬁ:”’ytzzv'fyt
Y 2 21 2

v, =2, wheret=1,(2)
therefore, the vertical component of the velocity
Uy = 21117”(3)
Substituting (2) and (3) in (1), we get

2
Fel = 2y'rln26v (4)
After leaving the plates, the electron then moves
by inertia. The tangent of the angle at which the
electron flies horizontally, after departure from
the plates, is

— Yy _ 2y _ 2y
tht— v vt 1

On the other hand

Y-y _ 2(Y—y)
L—L = T2L-1

tga =

Then
2y _ 2(Y—y)

l 2L—1

After simple transformations , we find

y =375
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215

2.1.6

Let’s make a substitution (5) in (4) and find the
answer to the question

F, — 2mev® Y1 meYo?
el = T2 2L T T IL
Answer:

_ m,eYv2
F= =47

Forces acting on the cargo Newton’s second law:
Ty + Ty + Ts + Ty + m§ = ma

Write down the system of equations in projec-
tions on

the Oz and Oy axes:

T4 — T3 = Mg
T, —T1 = ma
Hence
_ To—T,
a4 =97 5-T,
Answer:
L
@ =97T,—T,

If we consider a rod with a mass of m as a single
whole, then it will move with acceleration

_F
a_]\l'

Because the rod is inextensible, then the accel-
eration of all its parts is the same and equal to
a

Consider a small section of a rod of length dz and
mass dm. Since the rod is homogeneous

dx

T

we write down Newton’s second law for this sec-
tion.

adm = F(x + dzx) — F(z)(1)
Where

F(z + dz) and F(z) are the force of interaction
with neighbors

dm=m

Let’s integrate expression (1) along the horizon-
tal = coordinate:

JyamE = [LdF

mal2

Answer:
T=F(1-9%)

Let’s write down Newton’s second law for both

moa = Fy —T
bars along the horizontal axis ? °
mia = T — F1

Reduce by acceleration a
my _ BT

my T—F

2.1.7

2.1.8

2.1.9

mo _ 2a0t—T
my  T—at
Express T

T = at2mtme
mi+msa

From where, the time before the thread breaks
T

t = Tlmitms)
T ami+ma)”

Answer:

+ = T(mi+m2)
T amit+ma)”

Let’s write down Newton’s second law with an
astronaut

kxo = (mo 4+ m)asg
And with an empty chair
kl‘l = Mopay

Let ’s take into account the equidistant motion

AL
5 01
2
k%= = (mg + m)ay
From the first equation
k — 2m0

2
tO

We substitute it into the second

2
m = mo(i—% —1).

Answer:
m= mo[(é)2 —1].

Let’s write down Newton’s second law for the
horizontal axis Oz

Fy — F = moa
F— F1 =mia
From here we express the mass ratio

my _ - F

mi F—F

Answer:

Fr—F
F—F,

my _

mi1

1. The movement of the container can be divided
into three sections: on the acceleration section
OA. on the piston side, a force F' = nmyg acts,
which accelerates the container to a speed of vg;
in the second section AB, the container moves
like a body thrown vertically upwards, in the
third section, after stopping, the container with
the equipment will make a free fall to the bottom
of the shaft.

2. We write down the equation of the basic law
of dynamics for the acceleration section, which,
in combination with the kinematic conditions of
equidistant motion, allows us to determine the
values y1,t; and vy



2110

2111

nmg — mg = ma
a=g(n—1)=1240 %
Vo = aAt = g(n — 1)At =50 =

_ g(n—1)At?
Y1 = P}

3. Determine the time of lifting the container
from the point A and to point B and the value y»

2= =(Mnm—-1)At=5s

2
aA2t — =2m

_ gt3
Y2 = vole — F*

yo = g(n — 1)2At% — 2(n— 1)2A¢2
4. Thus, the container will stop when it reaches
a height:

_ _ g(n—1)At? g(n—1)2At?
Ys = Y2 + Y1 = 2 + 2

5. The time of the container falling from a height
of Y3

13 = ﬁ = Aty/n(n—1)=5s

6. The residence time of the container with the
equipment in the airless” space

t= At +ty+tg

t=Atl+ (n—1)4+ /n(n—1)]
t=Atln++/n(n—-1]=10s

7. The weightlessness condition of the equip-
ment in the container will be tested for a time
tg=10s

Answer:

t=nAt(1+4/1— L)ty ~10s

When simulating weightlessness in a swimming
pool, astronauts are affected by the resistance
force of the medium, which will prevent move-
ment by inertia. In addition, the internal or-
gans of astronauts in the pool will not be in a
state of weightlessness and will function differ-
ently than in zero gravity.

Let’s write down Newton’s second law for the
vertical axis

mia =T —mig
moa = mog — T
From here we express the acceleration, which

will be the same for both loads due to the inex-
tensibility of the thread

— mo—mi
a= gm2+m1

We substitute into the system of equations and
find the tension force of the thread T’

T — 2mimag
mi+ma

The answer:

2.1.12

2.1.13

— — g1 —m2
a; = az = gm1+m2

T = Ty = 2T5.

The positive direction of acceleration corre-
sponds to the lowering of the load m;.

2m1 mo g
mi1+mz?

Let ’s denote the mass of the painter by M, , and
the mass of the chair by Ms. Let’s write down
the equations of motion of the painter and the
chair:

Mya=T - Mg+ P

MQG,:T—]\/IQQ—P
where P is the pressure force of the painter on
the chair.

Subtracting the lower equation from the upper
one, we find

_ 2P—(Mi—Mz)g _ 1
a==Frtn =39
Then adding up the equations of motion, we find

2T = (Ma+ M) (a+g) = 3(My+ My)g = 1.1-10°
N

This is the full load on the block:
N=2T=11-10>N

Answer:

a=35%

T~11-10>N

Let’s write down the equilibrium condition for

the two lower balls on the vertical and horizontal
axes

mg = Fisina
F, = F|cosa

where P is the pressure force of the painter on
the chair.

And for the upper ball
T =mg+ 2F;sina
T = 3mg

Respectively, when the thread burns out, the
force T' = 3mg will act down on the upper ball.
From Newton’s second law, its initial accelera-
tion is found as

a= % =39

On the lower balls, a force F,, will act in the hor-
izontal direction, which will be compensated by
a force F} cos «, and gravity mg — Fj sin«

Thus, the lower balls will be in zero gravity a = 0
Answer:

The acceleration of the upper ball is 3g, the ac-
celeration of the lower balls is zero.
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2.1.15

When the vibrations have already stopped, the
balls move with the same acceleration a.

Let’s write down Newton’s second law

mia; = —kAz
moas = —F + kAx

Reduce by a
my _ _ —kAx
mo  —F4+kAx
Express Ax

_ F__m
Az = k mi+mo

Immediately after after the termination of the
force , the elastic force kAx will act on the bodies,
which will cause acceleration

mia; = —kAx
moas = kAx

From where we express a;

- F
mo—+my

ai

And similarly as

le

az = mo(mi+msa)

The answer:

T = Fm1

- k(mi+ms)’
_ __F
a1 = mo+mq’
a2 — le

ma(mi+mz) "’

1. The springs in this problem are connected in
parallel, their deformation is the same

Az = Axy = Ax

2. The force acting on the mass from the springs.
It is defined as the sum of

F=F+F

, or

kAx = k1 Ax + koAx

3. Write down the equation of mass motion un-
der the action of an equivalent spring with a
stiffness of co, which will determine the maxi-
mum displacement

ma = (kl + kQ)Axmar

ma

(k1+k2)
4. The maximum values of the forces acting on
the mass

AImam =

Flmax = klemaa:
F2mam = kZAl'mam

Answer:

— ma .
Tmaz = [y +kz)?

Flmax = klxma.’m

Formaz = k2Tmaz-

2.1.16

2.1.17

2.1.18

1. When the springs are connected in series,
their deformation will be different with the same
acting force, this circumstance allows us to de-
termine the total stiffness of the springs as fol-
lows

A$0:A$1+A(£2:£+£:£

_ _kiko
ko = k1+k2

2. The combined effect on the mass of the
springs at rest will be equal to the applied force
F

koAl‘o =F

_ F(ki+k2)
AJ?Q = 7%1,%)2
Answer

_ (kitka)
z=F (217@22) ’
1. The body can be considered as free if the
bonds are replaced by their reactions. The fric-
tion force in this case is caused by the action of
a magnetic force, i.e.

Ffr:,Ume

2. The mass equilibrium condition in this case
will take place when the modules of gravity and
friction force are equal

Fr,

— 9mo
"

mog = pFm =

3. When the body begins to move at m > my,
then the equation of Newton’s second law will
be valid, which in projection on the y axis will
be written as follows

mg — mog = ma

a = gm:nmo
Answer: F = m:9 ;

a = 9(m=—mqo)

1. If a horizontal force is applied to the body,
and despite their efforts they do not move, then
it is natural to assume that something prevents
this. And this "something” is the friction force
of rest, equal in magnitude to the applied force.
The magnitude of the resting friction force may
vary depending on the magnitude of the applied
force. The greatest value of the friction force, at
which sliding does not occur yet, is defined as:

2. The friction force of rest, like any decent
force, has a direction, it is directed towards a
possible (virtual) movement, and with zero ex-
ternal force, the friction force will also be zero.
Thus, the resting friction force varies linearly
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2.1.20

2121

from zero to the maximum value, remaining con-
stant thereafter. An external force begins to in-
form the body of acceleration.

Let’s conduct a visual experiment, put a pen on
a piece of paper and slowly pull it aside

At some point, the pen will go in the opposite
direction and slip out from under your hand

Using a special program, we will determine the
angle of inclination of the handle at this moment

It turned out
a=T°
Let’s display the forces acting on the handle
Since the friction force is the friction force at rest
Fpr = pN
We write down the equilibrium condition at the
critical moment

uN = F'sina
{N = Fcosa

From where

We substitute experimental data
p=tan7° =0.12

1. The friction force modulo cannot exceed the
value F¢.(max) = uN, where N is the sum of the
projections of all forces in the direction perpen-
dicular to the possible displacement. At equilib-
rium, the friction force is equal to the sum of the
projections of forces on the direction of motion.
Thus, at rest

Fy. = mgsina
2. Otherwise, at 1 > tan a
Fy,. = pmg cos a

3. The maximum value of the friction force will
occur at angle «

o = arctan p

Answer:
Fy. =mgsina at tana <

Ffr. = pmgcosa at tana > p.

1. Discarding the bonds imposed on the box and
replacing them with reactions, it can be consid-
ered as a free body capable of moving along the
OX axis. The friction force in this case is di-
rected towards acceleration, i.e. against the pos-
sible movement of the box.

2. The equation of Newton’s second law al-
lows us to determine the maximum acceleration
value

2.1.22

2.1.23

umgcosa —mgsina < ma

‘a < g(,ucosa—sina)‘

Answer:

maz = g(pcos o — sin a)

A body on an inclined plane is under the action
of three forces: gravity F;, = mg, friction force
Fy=— pmg and the normal coupling reaction N,
however, with further consideration of the mo-
tion, the normal reaction can not be considered,
because its projection onto the horizontal axis
along which it moves the body is equal to zero.

The equation of Newton’s second law in projec-
tion on the OX axis when the body moves up-
wards in vector form is written as follows

Fi + F,=mad

Let’s determine the projections of the acting
forces on the Oz axis and write down the equa-
tion of Newton’s second law

Fi, =mgsina, Fy, = umgcosa

@mg cos a + mgsin @ = ma

Divide both parts of the last equation by the
mass m and express the acceleration value

a = g(sina + pcos @)

The time of the body’s upward movement ¢; is
determined from the condition that the velocity
is equal to zero at the end of the ascent

0= —at = t; = vpa = vog(sina + pcos @)

The downward movement of the body corre-
sponds to the equation

mgsin o — pmg cos @ = ma

a = g(sina — pcos @)

The velocity will become equal to vy only at the
end of the descent, because the conservation law

no one canceled the energy, so
dv

% = g(sina + pcos a)
Jo 0 dv = g(sina + pcos o) = 52 dt
ta = vog(sina + pcos @)

The required time is determined as the sum of
t =11 4+ to

2v sin o
lg(sin?2a—p?cos?a)]

t =

st — ___ 2usina
The answer: t = i a2 cosTa)]

1. The normal coupling reaction in this case will
be determined by both gravity mg and the pro-
jection of the applied force on the OY axis:

N =mg — Fsina

The friction force is defined as:
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2.1.25

Fy,

2. The basic law of dynamics, thus.
written as follows:

= (mg — Fsina)
it will be

Fcosa = u(mg — Fsina)

3. It is easy to determine the desired accelera-

tion from the equation of Newton’s second law
= L(Fcosa — pymg + Fsina)
a=L(

- (cosa — psin o)

Answer:

a = (£)(cosa + psin ) — pg, if the expression is
greater than zero, otherwise a = 0

Forces acting on the cylinder: gravity F; = mg
two forces of normal reaction of the faces of the
dihedral angle N; and ]\72, two forces of friction
of the cylinder on the face f f_;l and f f_;g (see fig-
ures). Since the cylinder has axial symmetry
and the planes of the dihedral angle are sym-
metrical with respect to the vertical

NV = No| = N froal = |freal = Fpr

According to the Coulomb — Amonton law
fr=nN.

The basic law of dynamics for a cylinder has the
form

md@ = mg+ Ny + Na + frr1 + frro

Since the cylinder is stationary in the plane of
section perpendicular to the edge of the dihedral
angle. that is, projecting this equation onto the
axis. perpendicular to the edge, we obtain (see
Figure b)

2N sin § = mgcos 3

In projection onto the edge (axis OX), the dy-
namics equation for the cylinder is written as
ma, =mgsin 8 — 2N p

Substituting N here, we find the acceleration of
the cylinder

pcos B )
—a
sin 5

a; = g(sin 8 —
Answer:

a = g(sin 8 — “C‘”ﬂ) at u < tan fsin §
a=0at p > tanBsin §

1. Due to the weightlessness and inextensibility
of the thread, as well as the ideal properties of

the block (no losses and low weight), the problem
can be solved in the following approximation)

a1 = a2 = a

TyW=T,=T

2.1.26

2. The equations of motion of goods in projection
on the vertical axis in this case are written as
= -T
follows: { 1%~ ™29
maa =T —mog — Fy,
3. Solving the equations together, we get

(m1—ma)g—Fy,
mi+ma

4. Substituting the acceleration magnitude into
the first equation of the system allows us to de-
termine the tension threads

a =

— gy, 229+ Fyr
T = m mi+ma
Answer:
_ 2mgg+Ffr
T= my mi+ma

Consider the forces acting on the box (Fig.).
These are gravity mg, rope tension force F im-
pact reaction force N and friction force Ffr, the
value of which Ffr = uN. We will project all
forces in the direction along the convergence and
perpendicular to them and write down the cor-
responding equations of motion.

Since the box does not move in the direction per-
pendicular to the convergence, the sum of the
projections of forces in this direction should be
zero, that is

N + Fsin(f —

Along the convergence, the box moves with ac-
celeration a (in the special case, with uniform
motion a = 0), so the sum of the force projections
should be equal to ma:

F cos( —

From equations (1) and (2) we obtain:

_ ma+mg(sin a+p cos o)
F= cos(B—a)+psin(B—a) (3)

The resulting expression for the force F' angle
B includes only the denominator. Therefore, the
magnitude of the force F' will be minimal at such
a value of the angle 5 at which the denominator
in formula (3) is maximal, that is, the maximum
value

cos(f — a) + psin(B
Let’s do some transformations. Let’s imagine

the coefficient of friction 1 as the tangent of some
angle v:

a) —mgceosa =0,(1)

a) —mgsina — pN = ma.(2)

—a).

tany = p;y = arctan u;

siny = ﬁ;cosv =
Then you can write:
cos(B—a)+pusin(f—a) = /1 + p2cos(f—a—7).

The last expression is maximal and equal to

Vi+ptatf—a—vy=0,thatis,atf=a+~ =
« + arctan u.(4)

_ 1
14+-p2 :



With such a value of the angle § and the min-
imum force F'. Moreover, if the box moves uni-
formly (a = 0), then

F, min

mg(sin a+p cos o)
\ 14u?

and when moving with acceleration a

Fmin =

ma+mg(sin a+p cos o)
Vi+u? ’

However, this solution is not true for any accel-
eration. Since the direction of force F does not
depend on a, and the absolute magnitude of the
force F' increases with increasing acceleration
, then at a certain acceleration value a = qag ,
the force F' will become such that its component
Fsin(f — ), perpendicular to the inclined plane,
will be equal in absolute magnitude to the com-
ponent of gravity mgcosa. In this case , both
the force N and the force F will vanish. In the
future (at a > ag), in order for the box not to
break away from the skids, the direction of force
F must change with increasing acceleration so
that the component of force F' perpendicular to
the inclined plane remained equal to the compo-
nent of gravity, that is,

Fsin(f — o) = mg cos «

For the components of these forces parallel to the
inclined plane, we can write

Fcos(f —a) —mgsina = ma
From the last two equalities we find
tan(f — )

from where

gcosa
gsina+a

gcosa
gsina+a

8 = a + arctan

The value of a¢ can be found from the consider-
ations that for a = a¢ the value of the angle 3
from (4) and (5) coincide:

g cos o

(0% + arctan m

= o+ arctan

from where

a/O — g(COZQ

So, for a < ag (hence, with uniform motion too)

—sina)

8 =« + arctan
For a > qg
ﬁ:oz—i—arctangf;;%—i—a

We have solved the problem. However, here is
another solution. This is a beautiful geomet-
ric solution. With uniform movement along the
slopes, the sum of all forces should be zero. Re-
place the forces N and F}, with their resultant
@ =N+ F}r (Fig.) and add the forces @, F and
mg. They should form a closed triangle. Let us
replace that the direction of force @ is an angle §

2.1.27
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with a perpendicular to the inclined plane such
that

tand = Lir N

= =u

Thus, when the magnitude and direction of force
F change, the direction of force () remains un-
changed. Therefore, the absolute magnitude of
the force F will be minimal if it is perpendicular
to the vector @ (Fig.). (since the magnitude and
direction of the vector mg are unchanged), the
minimum force will be:

Frin = mgsina + mgp cos a = mg(sin @)

Thus, the value of the minimum force required
to lift the box with acceleration a < ag is

Frnin = mg(sina + pcos )

If acce}eration a > ag, then for the minimum
force F' directed at an angle 8 horizontally, we
have:

B

Answer:

(a)

B = a + arctan y

_ gcosa
= « + arctan Jeinata

(a) Let the man not slide

R=F; +N
tan p = % = ( = arctan y

T—minif T L R (Because Mg and R fixed in the
direction,see fig.)

Fig.
Q=
« = arctan pu
(0) Trin—?
Tcosa=uN
{N +Tsina= Mg
Tcosa = pu(Mg—Tsina)
T(cosa+ psina) = uMg

T = uhMg
cos a+psin «
tana =

cos? a+sin® o
cos? «

2 _ 1
(D1+4tana = i

: _ — 2 _ _ 1 —
(2)sina = Vi-cosPa = (\Jl-m =
[14p2—1 — ©
1+p2 \/1+lt2
(BT = 44 =] s
123 \/1+N2
Vitp2

(c)Let’s find out at what mass ratio it is possible
to choose the optimal angle o = arctan u so that
a person does not slide:



Tcosa < un
Tcosa < pu(mg + T sina)
T(cosa — psina) < umg +— (1,2,3)

M
1+p.2(

m > M

1— 2
) < pimg
1—M2
1+p?
(a) Consider m < Mﬁzz in this case, the
person will slide by himself and will not be able
to move the box. Obviously, you need to increase
« in this case, the person will slide by himself
and will not be able to move the box. Obviously,
you need to increase it until the F, for the box
becomes the limit. Then the optimal angle will
be when N =T cosa = un so N = n:

{Mg—i—Tsina =mg — Tsina

Tcosa = uN

4 (m—M)g=2Tsin«a
Tcosa=uMg+ uT sin o

_ uMg ,
(5) T= cos a—psin o (4)
(m—M)g _  puMgsina uMg
2 T cosa—psina T H——p
1 2uMA4pm—pM _ p(m+M)
tan o H= m—M - m-M
. m-M
(6) tancx = MeEsl
— m—M
« = arctan (m+ M)
(7)
_ 1 _ 1
cosa = 1+tan2 o(9) 14 _(m=2?
n2(m+M)2

(8) sina = V1—cosa = [1—-—5m =

1+

n2(m+M)2
(m—M)2
1+u2(7n.+1\l)2 _ (m=M) | 1
(m—M)2 — p(m+M) — a2
W 2 nran? \/1+4M(2’(nwn+1\21)2
(7,8) — (5)
_ uMg _ _upMg (m—M)2 _
' (—1721% T GG 1+ w2 (m+M)2 —
1t (m—M)2
w2 (m+M)2
_ pug (m—M)2
= 2(m+M) 1+H2(m+1\/[)2_

%\/(quM)QJr (m;é\/f)z -

T = §\/k2(m + M2) + (m — M)?

Answer:

1—p?,
Atm > MHMQ.
« = arctan p;

M
T . pmMg
mn 1+,LL2

1—p>,
At m < me.

2.1.28
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m—M .
u(m~+M)°

T = %\/;ﬂ(m + M)2+ (m—M)?

Note: In many places, this problem is formu-
lated without the question about the angle, but
with the clarification m < M. The answer in

the solutions given turns out to be very often the
same only with our case 2 (see 1, 2, 3).

«a = arctan

As we found out, in fact, this solution is suitable
not for m < M, but for m < M% By the way,
the above links suggest a shorter way to find the
force, since it does not involve finding the opti-

mal angle.

Let’s estimate whether the error is large in the

2
range M};ZQ <m< M.

The red line in the graph below shows the an-
swer specified in Savchenko’s taskbook — this
answer cannot be correct, since there should be
no gap between the blue and red lines. The blue
dotted line for clarity shows the behavior of the
blue function outside the range of its applicabil-
ity, i.e. at

m < M %

A small gap in the green line shows the accepted
value for m = 70 kg. It can be seen that the
difference between the green curve to the right
of the gap and the blue solid one is not very large.

Answer:
1—;L2 .
AthMHu?'
« = arctan y;
T — Mg
14+p2
1—;1,2 .
Atm <mM T2
_ m—M .
o = arctan MCESE

T =2\/p2(m+ M)*+ (m — M)?

1. The external force when the car is moving is
the friction force F' = umg , therefore, without
taking into account the resistance from the air,
the dynamic equation of motion has the form

ma = umga = g 2. The kinematic equations of
motion in this case are as follows

v =wv9 —at
2
r=w- %

3. When substituting acceleration and time
values into the second equation, we obtain the

equation of the braking distance of the car

2 2
Yo _— Yo

ng 2png 2pg

Vo = \/2U9T

2
Yo
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From here, the speed should be reduced by a fac-
tor of v/10

Answer:
In /10 times.

We find the magnitude of the deceleration
a= —%t =-4

At = Av

2. The kinematic equations of motion in this
case are as follows

2
Yo

vAt?
2 2a

x:’l}ot— :50m

Let’s find the coefficient of friction p :

ma = pumg
uw= % =04
Answer:

w=0,4and ! ~ 50 m

a) In order for the body to start sliding, the ap-
plied force must exceed the friction force. When
determining the magnitude of the friction force,
it must be taken into account that in accordance
with Newton’s third law, the body acts on the
board, and the board acts on the body, therefore,
a double friction force

Fy = pg(my +my)
Condition for the beginning of movement:

’F > pg(my +m2)‘

To determine Let’s use the kinematic equations
of sliding time:

_ at? _ /2L
=% —t=,/

Acceleration a when acting along the board of a
constant force Fj, we determine from the equa-
tion of Newton’s second law in projection on the
direction of motion:

Fy — Fy =mia
a = Fo—ﬂgfnwlll-Fm‘Z)
Sliding time:

t — 2Lm1
Fo—pg(mi+ma)

b) Two external forces Fj, and a friction force F,
act on the body. Let’s write down Newton’s sec-
ond law for a body

miayp = FO — Ffr
Given that
Fgp = pN = pmag

mya; = Fy — pmag

2131
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From where we find a; as

Fo—pmig
my

ayp =
Meanwhile, only the friction force with the bar
acts on the board from external forces

Then Newton’s second law for the board

Mmaa = myg

We expressas

— ma
a2 = 1G9,

The answer:

a. F > u(ma +mq)g;t = \/%'

b. a; = Fy — umygma, as = pgmyms

Renumber the loads as shown in the figure, and
the axis X is directed to the right.

It is clear that then none of the loads can have a
negative acceleration.

Let’s prove that the loads 3 and 4 are moving as
one. To do this, let’s assume the opposite: let the
cargo 3 slides on the load 4. Then a friction force

Fy. = pmg
arises between them, and an elastic force
T > pmg

arises in the thread, while the acceleration of the
load 2 would be directed to the left, which cannot
be. Consequently, the acceleration of loads 2, 3
and 4 are the same.

Let’s denote the acceleration of these loads by
a1 = d, and the cargo is accelerated 1 through
ai.

Now let’s consider two cases.

Case 1. Let the loads 1 and 2 they are in relative
rest and a; = d».

Let’s denote the modulus of the friction force at
rest between them by F;-the modulus of the fric-
tion force between the weights 3 and 4 through
F, and the modulus of the elastic force of the
thread through 7.

Then: for cargo 1

F—F, =Ma
for cargo 2
Fi — T =masy
for cargo 3
T — Fy = mas
for cargo 4
Fy = Mas

Solving this system of equations, we get:
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_ 2m+M
B = 2(M+m)

F
Foayr = a2 = 570y

The same result can be obtained in another way.
Since the friction between all surfaces is a rest
friction, the cargo system moves as one body
with mass M = 2(M + m).

Therefore,
Fzmd1,d1 =daz = W
Case 2.

Let the cargo 2 slides the load 1. Then on the
cargo 1 the friction force

F},. = pmg
acts and this load receives acceleration a;

F—pumg
m

Cargo system 2,3 and 4 moves as a single body
whose mass My = 2m + M with acceleration

_ _umg
a2 = g1 m

The first case is realized if

2pm(m+M)g
F Z 2m-+M

Answer:
At F < 2umig(mitma) _

Py Fy we obtain aj.p; =
_ _ F .
A1right = A2right = 3(m; tmg)’

F—pumig
! y Qlleft =

At F > F, we obtain as,ignt = o~

— _ _Mpmag
A1right = A2left = m2+21m1 .

The appearance of the action on the wedge from
the chalk is due to the accelerated movement of
the body along the wedge

Motion becomes possible under the condition
mgsina > pmg cos a

otherwise the body will rest and acceleration
will not occur.

Using the principles of liberability, let’s imagine
the body as a free material particle under the
action of a system of forces mg; Fyr

The equation of Newton’s second law in projec-
tion on the direction of motion of the body is rep-
resented as follows:

ma, = mgsina — umg cos o
Gy = gsina — g cos o

The force acting on the wedge and the vertical
wall

F = mgcos a(sina — 1 cos @)
The answer:
F =mgcosa(sina — pcosa) at p < tana

F=0atyu>tana

2.1.33
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Two forces act on a falling drop: the constant
force of gravity, which accelerates the movement
of the drop, and the force of air resistance, which
slows down its movement and increases with in-
creasing drop velocity. The force of air resistance
increases until it becomes equal to gravity. Then
the speed change stops, and the drops fall at a
constant speed.

As the size of the droplet increases, gravity in-
creases in proportion to the volume, i.e. propor-
tional to the third power of the radius, and the
resistance force increases in proportion to the
section of the droplet, i.e. proportional to the
square of the radius. Therefore, as the radius
of the drop increases, gravity increases faster
than the force of air resistance, which means
that the constant speed at which the drop falls
to the ground increases as the size of the drop
increases.

a~0.7k
m

In this case, the movement occurs solely due to
the friction force, which, in fact, is the driving
force. If there were no friction force, then the
bike, as well as the car, would not move from its
place. Displacement with acceleration becomes
possible when the projection of the friction force
on the horizontal axis exceeds the modulus of
the resistance force from the air

pmg = f
When moving without acceleration, at a con-

stant speed, the latter inequality turns into
equality

pmg = f

umg = av?

_ pmg kg
a=E53~0.7

Answer:
a~0.7 %
Five forces act on the ball (see Fig.): gravity

Fy, = Mg, buoyant force F', air resistance force F..

, Earth reaction force N and friction force from
the Earth F,.

Denote by ¢ the velocity of the ball relative to
the Earth. Then

F.=—a(¥ — 1)

From the condition that the balloon moves uni-
formly in the horizontal direction, it follows

||~ Fyo| =0
|F| +|N| - M|gl =0
In addition,
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|Epel = pIN

Taking into account that

|Fr| = —a(|t"| — |d])

from the last three equations we obtain
0" =[] — £ (M|g] — |F])

Answer:

v=u,/(£)(mg —F) at au® > p(mg — F)

otherwise v =0

The equation of Newton’s second law for the di-
rection of motion:

ma = F,.

F. _ dvg

‘m T dt

The time derivative of velocity
= 4 (v — Ba)
dvg dr __
dt dt —pt
the minus sign indicates that the acceleration
vector is directed in the direction opposite to the
velocity vector. Combining the equations, we ob-

tain the value of the resistance force as a func-
tion of velocity

Answer: F' = Bmv

dvg
dt

_ dvg

Todt

Two forces act on a falling drop: the constant
force of gravity, which accelerates the movement
of the drop, and the force of air resistance, which
slows down its movement and increases with in-
creasing drop velocity. The force of air resistance
increases until it becomes equal to gravity. Then

2.1.38 Two forces act on a falling drop: the constant

the speed change stops, and the drops fall at a 9

constant speed.

Let’s write the equation after a long period of
time:

mg = Apor®v*(1)

Find m through volume V:

m=pV = % prrd

And substitute in (1):

%pm“sg = Apor?v?

Hence:

v = ,/%pﬂ'rg . %m ~ 5.5 (2)
Of(2), the greater the r, the greater the V. This
means that large drops fall to the ground at a
higher speed

Answer:

Large; v ~ 5.5 =+
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force of gravity, which accelerates the movement
of the drop, and the force of air resistance, which
slows down its movement and increases with in-
creasing drop velocity. The force of air resistance
increases until it becomes equal to gravity. Then
the speed change stops, and the drops fall at a
constant speed.

Let’s write down the equation after a long period
of time:

mg = yro(1)

Find m through volume V:
m=pV = % prrs

And substitute in (1):
43pmr3g = yrv

Hence:

_4prg 2 _ .2
v=3r* =ar’(2)
a4 =g 100 2

Substitute and find the answer

v(5) = a% =025
v({g) = ozf%o =0.01 %
Answer:

v1 &~ 0.25 75 vg &~ 0.01 7

This is due to the Reynolds number for a given
situation.

If the Reynolds number is Re < 2000, then the
drag force is proportional to the velocity

If Re > 2000, then the resistance force is propor-
tional to the square of the velocity

1. The acceleration of the washer is determined
by the equation of Newton’s second law:

uwmg = ma

a=pg
2. With the width of the conveyor belt d, the
washer will travel an equidistant distance = due
to the movement of the belt. From the similar-
ity of right triangles obtained on the vectors of
given velocities and geometric parameters of the
movement of the washer, we find the ratio:

d_ v

T~ wg

d _ v

x </v2+u2
_ v

d= m\/1)2+u2

3. The distance traveled by the washer we find
x from kinematics:

v =wv9 — at
2
x = ot — %=



2141

2.1.42

2.1.43

v=0—t= 0 = Yoiw
a Hng
_ v2+u2 v2+u2 _ U2+u2
xr = — =
ng 2png 2pg

4. Next, substitute the value of = into the equa-
tion for d

d = p Yt
2pg
Answer:
_ 2 2
d= 55 V2 + u?.

1. A translationally moving washer has only the
kinetic energy of translational motion

K, =

the plane motion of the washer, which is a super-
position of translational and rotational move-
ments, is characterized by two components of ki-
netic energy: translational and rotational:

m'u2

2

Y
Ko =25+ 2
Ky = %(U2 + #)
Ky = %va

Kg > K1

2. The initial kinetic energy of the washers in
both cases will be spent on work against the fric-
tion force

App = pmgAz
3. According to the kinetic energy change theo-

rem:

Ky _ Azo
Ky = Az

Answer:

=1.5

Rotating

The sliding friction force acts along the line of
motion in the opposite direction, its magnitude
is determined only by the coefficient of friction of
the surfaces (i.e., for a given nail, it is condition-
ally constant in magnitude and does not depend
on the method of movement).

If you pull directly, you need to apply a lot of
force along the axis of the nail. And if you ro-
tate, then the vector of the friction force rotates
from the axis of the nail, decomposing into two
perpendicular forces: a small axial and a large
radial. A large radial force is overcome using a
lever (the length of the pliers handles is much
larger than the diameter of the nail). There re-
mains a small axial component, which is easy to
overcome.

wRF

v =

2.1.44
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Since the speed changes quickly, the body does
not have time to move in the horizontal direction
and moves all the time in the direction ¢

Since v = const, there is no acceleration in the
direction along the velocity ¢

mgsina = pumg

cosa
cos3

__ tana
cosf3 = e

For geometric reasons, the modules of the vec-
tors ¥ and i are related by the ratio

_ _u
v= tan 8
tan o
_ I
v=1u 1_tan?a
2
v =u tan o
p2—tan? o
Answer:

tan o

U= u\/;ﬂ—talﬂ @
Projecting mg onto OY:

From the figure, we find the reaction force of the
support:

N = mgcos

According to the Amonton — Coulomb Law:
Fyp = pN = umg cos a

Because p = tan « (by condition):

Fyr = pmg cos o

Ff. =mg-tana - cosa = mgsina

F =mgsina

Redraw in the XY plane.
moment(p = 90°):

At the final moment(y = 0°):
Consider an arbitrary moment:
Note that ¢ varies from 0° to 90°:

Let’s write down Newton’s second law:

At the initial

duy _ Fsing

dt = m

duy, _ F(l—cosy)

dt m

d : _ Fsingp

T (usinp) = (T )

d _ F(l—cos¢

T (ucos p) = ———=+
Solve the system of differential equations:

de __ Fsing

dt F(nfu ((1))

du __ —COos ¢

G = ()

Divide (b) by (a):

du _
dp

1—cos ¢
sin ¢
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% _ 151;:10;@(190

du = tan(£)de

Integrate both parts of the equation:
= [tan(%)de(c)

f d“ = In|ul(d)

J tan(%)dy = —2in(cos(%))(e)

Substitute (e) and (d) in (¢):
In(v) + C = In(sin(p)) — (In(sin(F) — cos(%)))(e)
Answer:

v

2

1. Since bodies of the same mass move down
the plane with a stretched thread, the upper
body will have a rough surface. Bodies with a
stretched thread will have the same accelera-
tions.

2. Write down the equations of New-
ton’s second law in projection to the di-
rection of motion for each body separately:

{mlgsinoz —T =miaq

migsina + T — Ft = mgas
a]p = as
mip = mo

mgsina +T1T — Fy. = mgsina —T

Fyp = 2T

Answer:

F=2T

A body of mass m3 moves with the acceleration
of the center of mass of the system

Considering the whole system (without taking
into account internal forces)

— F
az = M+2m

In this case, a force equivalent to the double
thread tension force 2T

2T—Ma3

T= F (M+2m)

acts on the body ms.
Two forces T and F act on the body m4

Newton’s second law for the first body is written
as

F—-T=ma;
_ F(M+4m)
a1 = 2m(M+2m)

Similarly, only T
=T

ma

2.1.48
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FM

a2 = (M +2m)

applies to the second body m.
The answer:

Accelerations of weights 1 — 3:

_ F(M+4m)
ar = 2m(M+2m)
0 — —FM
2 = 2m(M+2m)
_ F
a3 = 3 12m
Let’s consider a small displacement over time d¢

from the point of view of kinematics:
For geometric reasons:
dy = dx - cot B

we differentiate both parts of the expression
twice:

dy.
d2t d2t

ay = ag - tan (1)

Because the author did not say anything about
friction, example F;, = 0 Next, we write down
Newton’s law 2 for a bar m; on the OY axis:

mya; = Nycospf

N1 = myay cos f(a)
Similarly for mo:

maas = mag — 2N7 sin B(b)
Substitute (a) in (b):

= msg — 2mya; - tan 8

- cot B

maa2
Substituting (1) into (¢):
Mol = Mag — 2mias - tan?

We express as:

mag

az = mo+2m1 tan? B

(d)
Considering (1), multiply (d) by tan f:

ay = magtan 3
1 = Ts+2m; tan2 B
Answer:
. magtan 5
ar = ma+2m; tan? §
as = mag

ma+2m; tan? §

Let’s apply Newton’s second law:
OX : T —Tsina = mgagy

Tsina = maqy

OY : N —mg — T cos o = mpagy =0

T cosa —mg = mayy

To—1
Yo—y1

tana =

Considering o = const
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dzg  dz

—9 — L) (yo—y1 = — ) (mo—1
é%(tana) — dt ) (yo (L;O) ;1)2 )( 0—21) —
da d= dy dy
%«g*—gfﬂ —y1) = $ (% — ) (w0 —21))
(G — ) o — o) + (% — ) (e — ) =
(Lo — Ly (wy — 1) + (o — By (Lo don)
(a0x - a1x)(yo - yl) = (ClOy - aly)(l“o - l’l)

tan a(agy — a1y) = oz — G1z
Of (1)

agy =0

—tanaaiy = ape — a1
Rope length:

L =a2w—xzo+ 240

Because the thread is inextensible

d&PL _ d o 1 d2y0 _ d2y1 _
dt2 dt? + cosoc( dt? dt? ) =0
d®zq d®yo _ d?y; _

( dt20 = Aoz, a2 — aOya a2 aly)

Aoz - COS O = Ay —
From (1) : agy =0

Aoz COS QX = —Q1y

aly

Dividing the equations from (1):

Tsina __
T cos o

maiy
mlgtary)

—gtana

— tana(g + a1y) = a1
tanaayy = a1,

and using (4)

Dividing the equations from (1):

T(l—sina) _ M . _Gog

T cos T m gtaiy

Note that:

a1y = —gsina

l—sina M
cosa m

_ gta?oz m = M's:incz2
g—gsina (1—sin )

M sin «

m= (1—sin )2

Answer:

a=gtana

mo_ Stno

m= (1—sin ar)?

Let’s divide the acceleration of the bar d, into
normal @, and tangential @, components

From the figure:

an, = az -sin

ar = as - cosf

tan 3(0)

On = Q7 -

Consider a small change in the coordinate of 2.1.51

the wedge and the bar on it in a small inter-
val dt: The wedge moved by dr; Meanwhile, the
bar in the frame of reference associated with the
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wedge, the bar moved along the OX axis by dx,
and along the OY —by dy

Relative to the starting point, in the direction of
the Observer, the bar has shifted by

OX :dx = dxg + doq

OY : dy = dyy

Because the bar does not come off,
dy = dz - tan a(a)

Let ’s iterate twice both parts of the expression

(a):

dy _ dz

d2t — d2t
an, = (ar + ay) - tan a(1)!

Let ’s write down Newton ’s second law for a bar
on the axis:

OX : ma, = Nsina(2)

OY : ma,, = mg — N cos «(3)

According to Newton ’s third law , the pressure
force N’ exerted by the bar on the wedge is equal

in modulus and opposite in direction to the force
of the normal reaction of the support V:

N' =—N
Newton’s second law for a wedge on the O X axis:
Ma; = Nsina(4)

Let’s compose and solve a system of equations
(0), (1), (2), (3) and (4) with respect to M:

-tan «

an = a; - tan
Ap = (aT + 0,1) -tan 3
ma, = N sin «

ma, = mg — N cos a
Ma, = Nsina
ar-tan B = (a; +a1) - tana
ma, = N sina
ma, = mg — N cos o
Ma; = Nsina
M =ma, - L

ai

ar(tan f — tana) = aq tan «

ar __ tan o
a; ~ tanfB—tana
M =m?2=
ai

_ tan o
M=m (tan B—tan )
Answer:
M = m tan o

(tan B—tan ) *

The movement of the plate is complex, consists
of horizontal (due to the movement of the rollers)
and at an angle to the horizon, and is progres-
sive. Let’s set up our forces. The vectors in blue



are the forces acting on the rink (N is the force 2.1.52 Since the system is closed, there are no external

from the plate to the rink, it is equal to and op-
posite to the force from the rink to the plate, F,
is the friction force acting on the rink (under its
action the rink rotates), and the reaction force of
the support R at point P).

Similar forces act on a skating rink with a
smaller radius. The red vectors indicate the
forces acting on the plate (V is the total reaction
force of the supports, mg - gravity, F, - friction
force from the rollers on the plate).

Let’s choose the Ox axis in the direction of the
plate speed. The velocity itself is the instanta-
neous velocity of the point of contact between the
plate and the roller, and the point P is the in-
stantaneous center of velocities, and v is perpen-
dicular to PC(instantaneous radius of rotation).
Let’s write down the equation of motion of the
plate in projections on the Oz axis

ma = mgsin § 4+ N sin § — F, cos §(1)

There are three unknowns in this equation.
More equations need to be drawn up. Let’s write
down the equation of rotational motion for the
roller. This equation has the form

Ile=YM

The product of the moment of inertia of a body by
angular acceleration is equal to the sum of the
moments of forces acting on the body. Let’s find
the shoulders of the forces acting on the roller
PC

27 cos §

The shoulder of the friction force is

2r cos? S and the shoulder of force NV is 27 cos § -
sin §

The shoulder of force R is zero.

Let’s write down the equation of rotational mo-
tion for the roller (since the mass of the roller is
zero according to the condition of the problem,
then I = 0):

0= —Ff,2r cos> § + Nrsina(2)
From where
Fy. = Ntan §

substituting this value into the equation of mo-
tion (1), we get

ma = mgsin g,

i.e. the desired acceleration is equal to

a=gsing

Answer:

a=gsing

forces

Accordingly, the center of mass of the system has
no acceleration

ac = 0(1)

Considering that @; and d@, are directed in dif-
ferent directions, the acceleration of the center
of mass of the system is described by the expres-
sion

mia; —maa2
mi+ma

Considering the ratio (1)

ac =

miay = Mmaaz

From where, the mass of the second star

Answer:

mo = my Z—;

Let’s make the drawing larger. Let’s set up our
forces. At the initial moment, the dumbbell does

not move, so we write down Newton’s second law,
taking into account that the acceleration is zero.

We write down the equilibrium condition on the
axis:

0=N; —mg—Tcosa
0 = Ny — mgcos(m — 2a) + T cos a.

It is not difficult to guess that the design was
carried out in the directions N; and N,. From
this system we find

Ny — Ny > 2myg

Ny + N3 > mg — mg cos(m — 2a)
because cos(m — 2a) = cos? o, then

N1+ Ny = mg — mg cos? o

By the condition of the problem « = 90°
With this in mind, we finally get

m
Np = -5

» »

The sign means that the force is directed in
the opposite direction, as indicated in the figure.
Answer:

For the upper ball N; = =2,

for the lower ball N, = 2724

1. The stationary circular orbit of an electron,
which is a negatively charged particle with a rest
mass m., will take place if the Coulomb force of
attraction and the inertia force

F,=F,



2.1.55

2.1.56

are equal in modulus

2. The inertia force is directly proportional to
the square of the linear velocity of the particle
and inversely proportional to the distance to the
axis of rotation

F;
Thus, the Coulomb force in this case is inversely

proportional to the distance between the elec-
tron and the charged filament.

2
mev
T

3. As the charge of the filament increases,

2
Mmev
Fi > e

to restore equilibrium, the radius of the orbit
should decrease, while decreasing the charge, on
the contrary, the radius will increase.

2
Answer: F' = et

Close to parabolas, touching circle from the in-
side;
from the outside.

Because the thread does not sag
T,=T,=T

As soon as the nail appears, both bodies con-
tinue to move at a speed of v along the new tra-
!

jectory r = 3

T =ma,
T = m%
2
We obtain the tension force of the thread imme-
diately after that

_ 2mo?
T= l
Answer:
T = 2mv?

l

1. In the case of a weightless and inextensible
thread, its tension is defined as:

T=F=

mu? _ mw?L

L 2L

T = mw?L
2. Select a given section of the rope and deter-

mine the mass of its part length (L — )

_ L—x
My = M=F

3. Determine the distance from the axis of rota-
tion Oz to the center of mass of the rope segment

_ L—x
ry =L — =5

_ L4=x
Te = 5

4. The tension of the rope in the section x will
be due to the rotating mass M and the mass of
the rope m,

2.1.57

2.1.58

19

_ 2 mw? (L% —z?)
T = Mw L + — oL

Answer:
T = Mw?l,

mw? (12 —z2
Ty = Mw?l + =)

Projecting the tension force of the thread T, we
write down Newton’s second law on the vertical
and horizontal axes:

Tsina = ma,

mg — T cosa =0
Hence

mgtan @ = ma.(1)

We find the centripetal acceleration through the
angular velocity of rotation w

ae = w?

We substitute in (1)

g=w?’Rcosa

r =w?Rsina

From where we find o

cosa = gw?R

Given the area of definition of the cosine
—1<cosa<1

At g > w?R, the angular velocity will no longer
be enough to lift the body to some angle and
the body will take a stable position at the low-
est point of its trajectory corresponding to

Answer:
COS x = (w‘g;R) at ﬁ < 1

oa=0at L=

A > L

Projecting the tension force of the thread T for
the lower ball, we write down Newton’s second
law on the vertical and horizontal axes:

Tsinf = ma,
mg—Tcos =0
Hence

mgtan o = ma.(1)

We find the centripetal acceleration through the
angular velocity of rotation w

ae = wW?r = w?(ly +1z)

a. = w?l(sin o + sin 3)

We substitute in (1)

gtana = w?l(sin a + sin )

From where we find w

_ gtan B
w= \/ I(sin B+sina) "




2.1.59

2.1.60

The answer:

_ /__gtanp
w= I(sin B+sina) *

We write down Newton’s second law for the load,
taking into account the elastic force of the spring
F, el

ma. = F,; = kAx

We express Az in terms of the length of the un-
deformed spring [

ma. = Fop = k(R —1)(1)

We find the centripetal acceleration through the
angular velocity of rotation w

a. = w?’R

a. = w?(l + Ax)
Substitute in (1)
ER-1)=w’R
From where we find [

2

I=R(1- ™)

The answer:

I=(1- 2R

Consider a small piece of harness of length di =
2aR

Tension forces act on a piece of the harness
Ty =Ty = 2ka(R — Ry),

taking into account sin o =~ « at small angles
T, =2T«

Due to the uniformity of the harness, a piece of
length di = 2a.R will have a mass

dm =m%

At the same time it will be affected by centripetal
acceleration

a=uw?R

We write Newton’s second law as

dma =T,

miw?R = 4k(R — Ro)a

From where we find R

R
R=—fu

maw
: 4r2k

Analyzing the resulting expression,the result-
ing elastic force will act at R < Rof’n aimed
at stretching, which will not be compensated
by centrifugal force. Thus, the tourniquet will
stretch endlessly and eventually break.

Answer:

R= (1_13‘37&) atw<27n/%

a2k

at w > 2w,/ % the ring stretches indefinitely.

2.1.61 To begin with, I advise you to familiarize your-

self with solution 2.1.60

Consider a small piece of harness of length dl =
2aR

A piece of the harness is affected by the friction
force Fy,

Fgr = pN

Due to the uniformity of the harness, a piece of
length di = 2a.R will have a mass

dm =m%

While centripetal acceleration

a=w’R

will act on it

Newton’s second law is written as

dma =N

m%wQR =N

Where does the friction force

Fy = um%wZR

come from Considering sina ~ « at small an-

gles, we write the equilibrium condition on the
vertical axis

2To + Fy, = dmg
2T o + pm%sz =mgs

From where we find

— mg
H= (2rT—mw?R)

Answer:
— mg
H= (27T—mw?R)

— t U2
« = arc anﬁ

Due to the fact that the angular velocity varies,
in addition to the centripetal velocity a,,, there
will also be a tangential acceleration a,

According to the Pythagorean theorem, we find
the total acceleration d

0= /@& T

a=+/(w?R)? + (e¢R)?
a=¢cRV1+e2RE

Newton’s second law is written as
ma = Fp,

ma = pmg

eRV1+e2RT = g

This equality holds for

From where we find w



2.1.64

3 *52)

In this case, if ¢ > 57, then a, will be so large
that the force of friction at rest will instantly
turn into the force of sliding friction, even when

a, =0
Answer:

w1:0ats>“—Pf’
2 2

wi = (f4L;)7 ate < &

Let’s depict the forces acting on the motorcy-
cle (see Figure above), and write down Newton’s
second law

N +mg + Fy, = ma.

In the projection on the axis:

Oz : Fy, = ma;

Oy: N —mg=0.

Cons1der1ng that when moving along a circle a =
= ,the friction force is equal to Fy, = uN, we

get that the maximum speed of a motorcyclist is
equal to

pgR
When turning, the motorcyclist deviates to the
center of the circle by a certain angle (see Figure
below). Then according to Newton ’s second law

N + mg = md

Ox : N sin 8 = ma;
Oy : N cos B = mg.
Where from

tan 8 = ¢ = &4

Consider the movement of a cyclist along a hor-
izontal drift (Fig.).

The cyclist is affected by: gravity mg and the
normal component of the reaction force of the
support N.

The centripetal acceleration of a cyclist can only
be reported here by the frictional force of rest, di-
rected along the radius of the circle to the center
of O and arising when the cyclist leans towards
the center of the circle.

The resultant of the forces N and Fy, — F =

F}-r + N passes through the center of gravity of
the cyclist, and otherwise there would be a tip-
ping moment of forces.

According to Newton’s second law, for pI‘OJeCtIOIl
into the radial direction X Fy, = ma, = m*4,
where v is the speed of the cyclist.

21

Since the resting friction force Fy, < uN = pumg,
we obtain the inequality

v <
mY < pmg
v? < pgR — v < V/pgR

the maximum value of the velocity on the hori-
zontal track v; = \/ugR.

Consider the movement of a cyclist on an in-
clined track. The forces acting on it are shown in
Fig. (F' is the resultant of the reaction forces of
the support N and the friction forces of rest F,).
According to Newton’s second law for projections
on the X and Y axes:
on the Y-axis N cosa — Fy,sina —mg = 0(1)
along the X-axis Nsina + Fy,.cosa = may(2),
,U2
r
(v is the speed of movement on an inclined
track). Let’s rewrite the system in the form:
Ncosa — Fypsina =mg, (1)
Nsina+ Fprcosa = m%(?).

where a,, =

Let us express from this system N and F},. To
do this, multiply the equation (1’) by cos a, and
the equation (2') - on sin a:

{N0032 a — Fyp.sina = mg cos a,

2 .
L sin .

Nsin2a+Fchosasinoz =m'

After addition, we get
2 2 _ )2
N(cos® a +sin” a) = mgcosa + m
N =m(gcosa+ %)
Multiply (1’) by sin «, and (2)- on cos «, then
N cos? a — Fy, sina = mg cos a,
Nsin? o + Fprcosasina = m% sin av.
After calculations, we find
2
Frr = (%
Since F'y, is the friction force at rest, then

— gsina)

Ffr < uN — m(Rcosa —gsina) < pm(geosa +
= sma)
f(cosa — psina) < g(pcos o + sin )

Divide both parts into cosa(from the condition
cosa > 0).

2
7 (1= ptga)(p + tga)
< gflpttga)

If (1 — utga) > 0, then v? [ hon > O v <
gR(pttga)
1—ptga

This means that the maximum speed when moving
along an inclined track is

02 = ./ 9B(uttga)
- 1—putga
utg



2.1.65

2.1.66

2.1.67

The ratio

p+tga
n(l—tga)

Y2
U1

Answer:
v=+/pgR, f = arctan u, 3

pttan o
\/ n(1—ptana)”
The skater is informed by the centripetal accelera-
tion of the friction force on the ice
ﬁ fr= ﬂN
where N is the force of the normal reaction of the ice
(Fig. a).

Since the skateg does not move in the vertical direc-
tion, the force N is equal in modulus to the force of
gravity acting on the skater Mg

Therefore,
Fy. = pmg
mo? _
H- = pmg
Hence
v =+ ugR
When making a turn, the skater passes the distance
S=7R

during the time

t=2=m /2 ()

The larger the radius of the circle along which the
skater moves, the greater It’s time.

Although the maximum speed of a skater increases
with an increase in the turning radius, the distance
traveled by him increases even more: while the speed
is proportional to /R, the distance traveled is pro-
portional to R. That is why the skater tries to pass
the turn as close as possible to the inner edge.

gRsin a(tan a+p)

Umin = ptana—1

According to Newton’s second law, we have

mw 2

r =N +mgsina

where N is the force of normal pressure.
In order to avoid slippage, the condition
mgcosa < k(mw?r —mgsin )

must be fulfilled

from where

w? > Z(cosar+sina) at k = I.

Thus,

_ o
w =15

Answer:

gv2
R

w =

221 u=2.

2.2.2

2.2.3

224 m

225

2.2 Impulse. Center of mass

2

Fyr =

ol

_ 2psin(%)
t=202)

at an angle 8 = @ to the initial velocity.

{1@5' Using the experimental data, plot

the dependence of the span time on the source
voltage.

t = mo(sin a—p cos o)
[n(m+M)g]

at tan o < u the box will not move.

at tana > p

2.2.6
227 7L = ((1:;?:321)) It is necessary to take into ac-
count the change in the velocity of the Earth.
2.2.8
229 u; = I:fliO;UQ =v— Fn(@’—io.
2.2.10 m = %0,
2.2.11 uy = us =0, 2v.

2.2.12 At a distance of 4L horizontally from the gun

2213 £=25

2214

35

w = 2Ly/y2 2,

ma2

2.2.15 p = \/p? + 2p1p2 cos a + p3.

2216 V

3.2 3.3 3.2
mivi+msv;+myug

mi+ma+ms
_ Im. . Ilmq
2.2.17 I = 22— Iy = o
2.2.18 The trajectory of the particle is obtained by

2.2.19

2.2.20

stretching with similarity coefficient 2 the tra-
jectory of a particle whose mass is 2m.

Circles whose center lies in the center of mass of

the system station - astronaut. Radii of circles:
_ Rm: _ Rm

Rl — (ma +;ng) ’ R2 — (ma +71n2) :

On the bisector of the angle at a distance | =
LTﬁ from the vertex, where L is the length of
half of the rod; at the point of intersection of the
medians; on the line connecting the centers of
the disk and the hole, at a distance | = %
from the center of the disk.

2.2.21 u = 254,

2.2.22 y = LWlro=p)

22

(PV+poVo)*



2.2.23

T*27T,/39

2.2.24

F = mymav?
—(

mi+m2)l
_ meTi+mi T, _ 2mama(Thi—T>)
2.2.25 w=,/ P m = =
2.2.26 Tiy = #’:jmlwz for the thread connecting

m1 and mo; the expressions for the other threads
are similar.

2227 F=mg—pVa
2.2.28 F = SpLa
2.2.29 At a speed of § upwards.
2.2.30 n = (720192),
2.2.31 F = Nmg. Increasing.
. (M+Nm)?
2232 H = hygal .
2233 F="+p= % = N’g”
2.2.34 Avy = (Mﬂfm)gN(vg — 1)
2.2.35 F = pSu?
2.2.36 = Mg, = Mgta)
u ! u
2.2.37 F = ps(u —v) + pyu.
Su
2.2.38 v= ﬁ
_ [ F(p=po)
2.2.39 v = (szpz).
2.2.40 See Fig.
2.2.41 F =3mg(1 - 7).
2.2.42 F = mral),
2.2.43 v=+/gh
2.2.44 N =2(F — pv?) cos §
atv > £
P
2.245 K = k™.

2.246 u=vlnn

2.2.47 m =~ 5.5-10° kg; 7.4 times less.

2.3 Kinetic energy. Work. Potential
energy

2.31 Atm = Q—P;l

2.3.2 ;if F' > 0, the direction of the force

coincides w1th the direction of the particles, and
if F' < 0, the direction of this force is opposite.

F~25-10H

v = Fo(li+212+13)
= R

2.3.6 v>+2uglL.

2.3.3
234

2.3.5

237 A=0.8J

— 2 muv?
2.3.8 x=v\/2" = /o5 + 7

2

k)

2.3.10 At the greatest force we can develop, the bow
should stretch as far as the arm span allows. For
a tighter bow, as for a less tight bow, the stored
elastic energy will be less.

239 By = (F

2.3.11

K =mglcosa, K' = mgl(cosa — psin @)

2

2312 h = L

[2g(1—pcot o) *

2.3.13 v =,/4gh — 22

2.3.14 A, = mgl.

Am

_ mgl

2.3.15
2.3.16

muv

2.317 1= iR eray-

n —=

2.3.18 v=2/(l = h)Tm.

2.3.19 Moving through the pipe.

sin 8 =

vsin o
v v2+2gh

sin o
1-2F

2.3.20

m” cos? o

2.3.21 sing = at Fl >

muv2

2.3.22 At the bottom. In the upper one. At angle o =
arctg% between the thread and the vertical

T—3m
2323 v =15 mgg
2.3.24 F = 5myg for the rod; F' = 6mg for the thread.
o R
2.3.25 Liin = sqana—m -
2.3.26 h = 2E

3

23



2.3.27

2.3.28

2.3.29

2.3.30

2331 v=

2.3.32

2.3.33

2.3.34

2.3.35

2.3.36

2.3.37

2.3.38

2.3.39

2.3.40

2.3.41

2.3.42

2.3.43

2344 k

2.3.45

2.3.46

2.3.47

2.3.48

2.3.49

2rmg J/Am2R2 + h? + 1672 H?

F =mgcosa(3sina —2) atsina > 2

F:0atsina§%.

A = 2mumu

K = K"

o) at [x] > 29
Movement area: |z| < ./252% at K < fyro

F*0+70>atK>%.

; at ¢gQ > 0 - repulsion,
at qQ < 0 - attraction

At E > 0, the region of motion

at E < 0, r is between r1 o = % (—1+

F=mg(1+
= (m1 + ma)g.

(g + v/2ga — a2).

*)(g - a);xmax - (%

2.4 System energy. Energy transfer.

241

2.4.2
2.4.3

244
245
24.6

2.4.7

24.8
249
2.4.10

24.11

2412

2.4.13
2.4.14
2.4.15
2.4.16

2.4.17

2.4.18

2.4.19

2.4.20

2421
2.4.22

24

Power

In a moving frame of reference, the force of ten-
sion performs work. No

m1v2
Kl _ k‘(Il-zwz)wl

K2 _ k(lerzwz)wg'

2 2
_ mu muv” ., _ 2
Ay =T =T Ay = —mu

A=2Fr(2sin§ —1), a = 60°.

The sum of the works of the mutual forces de-
pends only on the change in the distance be-
tween the particles.

xzv\/%.
v =+ 2u.

v =+/gl.
Tmaz = 5

_ / 2Mgh
Um = tana M+mtan? o

UM = \/h[—i—zrﬁjtg"ﬁﬁ +29(H — h).

v= (35
F=1I79
h ~ 0.25m
K' =0.01K.

vy = (L —1p)4/ (2m) cos @

x=(l—1Ip)sina

a. In translational motion. The acceleration of
the center of mass and the total external force
for the system is related in the same way as for
an individual particle.

2

K= @gn:

v=1/2h(g — —) K =mgh, E.o; = Th.
Lm?

T = (M2—m?2)

lmin = lO; Zmaw = ZO + %

r = FRIEES at < tana

_ #mgcosa 1+\/1_2 tuna) ] at

tana < p < 3tana

xz%atuzi&taﬂa



2.4.23 The kinetic energy of the particle is

K= m(%w, where # is its velocity relative

to the center of mass and V is the velocity of
the center of mass. In sum over all particles of

the system, the summands miV give zero.

2 2 mi+mse
2.4.24 Koz = (gk) i Umaz = %;’UTGZ =F ((k,lr:m;))

2.4.25 At a velocity of the center of mass equal to zero
2.4.26 AW = Fl.

2.4.27 AW = F(I - £L)

m

B F?m2 _ AW
2-4.28 AW — W, U -

K = Fl+4 mme
[k(m1+m2)?]

2.4.29 A = mu?. Half of the work goes to increase the
internal energy.

AW _
2-4-30 T —_— m.

2.4.31 W =Wy + Wy 4 5272 (V; — 14)2, No.

2(m1+m2)
2.4.32
2.4.33 Q = m(% — gh)

2.4.34 Q = mghlmime)

(m1+ma)

2.4.35 Q = 2mgR(1 — \/1 — Mli;))\ﬁ R
2.4.36 E ~ 200 M.J.

2.4.37 m ~ 3 kg.

2.4.38 8 times
2439 v=pgtatt <ty = ﬁ
v =Bt — gy at t > to

2440 N =mogw(l — &), m = =2

2.4.41 m = s

2.4.42 v~ 20 kTm; «a = arcsin %

2.4.43 N = pS(v — wR)?wR.
_ 2v
2.4.44 1= %5

2.4.45 N = mgu,

2.5 Collisions

2.5.1 z; = 1; yes.
252 a= 7.
up _ (B=1) us _ 2k
253 % =52 = v
2.5.4 The mass of the neutron is close to the mass of

2.5.5

2.5.6

2.5.7

2.5.8

2.5.9

2.5.10

2,511

2.56.12

2.56.13

2.5.14

2.5.15

2.5.16

the deuteron (m, ~ "), so the energy loss in
elastic collisions with deuterons is much greater
than collisions with heavy lead nuclei.

m = \/Mmimsy.
_ V1V COS &

COSPD = — F——7—

6 (u14/v2+vZ—u?)
V) =20 — v1;05 = 20 — vg
After any odd number of collisions the velocities
o = (mimmz)vit2mavy o (ma—mi)va+2mivy

1= mi+ma > T2 T mi+ma

After any even - are equal to the initial ones.

v1 =0 \/ m1 Enm21+m3)’ =v \/ mggfﬁ-{mg)

tan 8 = tan a%.

d =22R.

The two nearest balls obtain velocities v; =

v cos a and vy = sin «, directed on mutually per-
pendicular sides of the cell, and the originally
moving ball will stop. These velocities are then
transferred to the next balls in corresponding
rows

t=t, —t,_1 = 2At.

_ (2Rcos @)
¢ = (2Reosa),

m sin (a+8)—sin® B\, s the mass of an incom-

sin? a
1ng particle, ms is the mass of a resting particle.
2517 sina = :?T?
2miv [e]
2.5.18 u = {00
mq (p2+p2— cos «
2.5.19 my = Lt core)
2.5.20 u = +/v%+ (v+wup)?
swivel angle ¢ = 7 + arctan %
2.5.21 v = /2gh(1 + 72).

25



2.5.22

2.5.23

2.5.24

2.5.25

2.5.26

2.5.27

2.5.28

2.5.29

2.5.30

2.6.31

2.5.32

2.5.33

2.5.34

2.5.35

2.5.36

2.5.37

2.5.38 v

2.5.39

v1 = 0;v2 =vatv>wvy=,/2gh(1+ 2)
_ 2mo _ ., ma—mq
VL = U, U = U at v < vy

Here v is the speed of the slide, v, is the

velocity of the body.
_ mo 2gRmq _ 2gRmq
v = my (m1+m2)’ b2 = (m1+ma2)

N =mag(3 + %nlf)

_ [ E(mi+m2) _ mi—mo k(mi+ma)
U= mimsz U1 = m1+m2$ mims
_ _2my
up = gy /k(ma + ma)mims

then u; = u, us = 0 and so on.

Mimas = gl Fzy» hemas = fgto Fmg)
1.5 times.

K =35.7 keV

Ermin = E(1+ 7=).

FErin =272 eV

v = 2Emo 2Em;
1= mi(mi+msz)’ b2 = ma(mi+mz)

E = p%ngrpgm%*QPlpzﬂnmg cos ©®
- 2mimsa(mi+ms)

F = K sin oy sin as

E =4.1 MeV.

cosa = % if 2mE < po
= 5 if2mE > po

h (m1—ms2) 2

ho (m1+ma)

Q _ B—%)

K — 1

Q1 =2v/Qam(v — 2 )

=yt u =i
vn%\/%atn%oo

tan 8 = tan o — 2p with tan o > 2pu

otherwise 8 =0

2.6 The force of gravity. Kepler’s laws

261
2.6.2

2.6.3
2.6.4
2.6.5
2.6.6

2.6.7
2.6.8
2.6.9
2.6.10
2.6.11
2.6.12

2613 Ty

2.6.14

2.6.15

2.6.16
2.6.17

2.6.18

2.6.19

2.6.20
2.6.21

2.6.22

2.6.23

2.6.24
2.6.25
2.6.26
2.6.27
2.6.28

26

a= % where R is the distance from the planet
to the Sun, K is the constant.

h ~ 700 km

Accordlng to the given data v = % ~5-1071!
H.

k 2, which is comparatively close to the re-
sults of exact measurements.

M ~6-10%* kg
M ~6-10% kg

0.3 times.
6 times.

R= (223

w2

~ 0.7 years.

_ R3
T =2m o)

v ~ 7.9 ER 0y~ 1.7 BT = 84 min,
T5 ~ 105 min.

_ o)
P =2moy/ 5 sin g

_ 3m?
F="r

AN ~9-103 H

a. R ~ 42 -10° km. b. The ™figure of eight”,
“touching” the 60th parallels with the point self-
intersection at the equator.

AU = yqiatiys a0 = &
v=4.6 kTm

u=/v?— v}

10 times less

v1 & 11.2 B8 gy 2.4 B
Av=(v2—-1)v

h =59 km.



2.6.40

2.6.41

2.6.42

2.6.43

2.6.44

2.6.45

(877)

_ 3ym
v =/
v 42 B
v~ 16.7 B
U=-2K
S = (3)vrtsina
“r ~ 45
p:R1/1+%.
V =o(2¥), R = @_1’

M is the mass of the Earth.

_ AYMm
E - (Ta+Tp)
Ry _ 2u?
Rz - ’U2
dv = Zujﬁfj. The vector dv is directed to the

center of the planet.

The velocity momentum (vector product of the
velocity on the radius-vector drawn from the
center of the orbit) of the probe is the same as
the station’s velocity momentum.

When the probe and station rotate by the same
angle, the velocity vectors will also change in
the same way. From the constancy of the
probe’s velocity momentum:

up = (v — Vsina)r it follows that

\%4

r= where ¢ = .

At £ < 1 the probe trajectory is an ellipse,
at e = 1 it is a parabola,
at ¢ > 1 it is a hyperbola

pu
u—V

— _bu —
WhenV<u, Tp—m,ra—

— in
Qpr = arcsin {7

2.6.46

2.6.47

2.6.48

2.6.49
2.6.50

2.6.51

2.6.52

2.6.53

Speed of “sweeping” the area % = %bVo =
1b,/22L (See the solution of the problem 2.6.45.)
The orbital period of the satellite T = (25}213 =
QWG%

VM

One can solve this problem without referring to
the solution of Problem 2.6.45. The radius of
curvature of the orbit at the apex of the major

axis of the ellipse R = % % Therefore % =

M _ Mb2 dsS _ 1 _ 1 M
ViE T Ur =Y G = avr = gby/ g

Satellite orbital period 7' = 272

v2a _

b2

N
ol

ma

P NI
In 1910.
1+Rey 5

t=m /2
t ~ 65 days.
Av =~ T70 7.
F _ ’YMW(Rg_RL;’)

~ (Ri+R2)R3R2

2 m 3R%r4r°

N = AZ;; -2 é\{éiljﬂ; )7R: ngO-
o~1,8-10'2 Pa

2.7 Rotation of a solid

2.71

2.7.2

2.7.3

2.74

2.7.5

2.7.6

2.7.7

2.7.8
2.7.9

This velocity is parallel to the major axis and 2.7.10

perpendicular to vector V, so Vo = Vu2 — V2
2
Since a = 3(rq +1p) = 2%,

~M

V3

then a = (From the equation % = Vp—]y for

a circular orbit, it follows that pu? = yM)

Finally, V, = 4/ %

2711

2.712
2.713

2.714

27

2 =32
K = %2“2. The disk has less energy.
_ R2 . _ RZ 2
M = mEe; ) — nig,
_ wR o _ _w2R
t= (ng) ™" = Trpg)-
J = mlrf + my’%.
n— w2R(1+pu2)
T mgu(l+p)]”
n — W2R(1+u?)
T Brgu(l+p)]”
[mi—ma|gR

W= Urmi RP+ma R2)

m Jw . _m J
P=5 =9 Py =5+
— F oy — _F
T Tnitma) T e R)
a=(3)gsina.Fy = (3)mgsina.

T = (3)mgsin

v = +/gl(sina — 2 cos av).



2.7.15

2.7.16

2.7.17

2.7.18

2.719

2.7.20
2.7.21

2.7.22
2.7.23

2.7.24
2.7.25
2.7.26
2.7.27

2.7.28

2.7.29

2.7.30
2.7.31

2.7.32
2.7.33

2.7.34

2.7.35
2.7.36
2.7.37

2.7.38
2.7.39

2.7.40

2mag

a= (2m2+m1)
t2
J = mrz[% —1]
_ (miR1—m2R2)R _ (m1R1—maR2)Ro2
a1 =9 J1+mlR§+2m;Rgl »a2=—9g qumllRfjmzRg’
_ J+maRa(Ra+Ra)
Lo = MG R L2
J+mi Ry (Ra+Ra)
m2‘g J+ﬂ;11€%+7277,231§ :
a=—4—T=21_m9_
o Z1amE
a=14
cosa > f.

; _ wR Q _1
See Fig. t = ey B = 2
t= v0(3ug).% = %

J— v
t= (ng)”

3,
w> g
W =w3 = Fiwe=—%

a = 60°. Less.
_ Amimag
N = (m1+mz2)
l2
N = 7(15193&2).

_ 2g(mi1—m2) 2g(mi—ms) . .
coso = wQZ(mllerzz) at |w2l(m11+m22)| < 1; otherwise
a=0ormT.

 Jiwi+J: _ JiJa(we—w1)?
w=SRERT Q=0
w= —(27}{).
w(/) _ (3w14—wz);wé _ (3w24—w1).

~ ., 2mavh
U~ TZflv’w - (777:121%)2)

_ 2
w= (mle:f;;lgr2) :
Aw = %fﬁ. It increases by a factor of (1+
n= %h_l
West. Such a wind in the northern hemisphere
is called a northeasterly trade wind
m =~ 4-10% kg.
a. "Humps” of tidal deformations of the Earth
and tides in its oceans are delayed in relation to
the passing of the zenith and the antizenith by
the Moon or the Sun. b. The tide in the Earth’s
atmosphere produces a momentum of forces that
accelerate the diurnal rotation.
v =+/3gL

2741 Q = 1—10va

3msv
2.742 cosa=1— gl(4m1+3m22)(m1+m2)'

2.7.43 At a distance of %l from the hand.
2744 F' = F(™* —1). At e = /5 F' = 0.

2.7.45 After the first strike, the velocity of the dumb-

bell centers is w, and they rotate in opposite
directions with angular velocity M After a
time #frw) the second stroke will occur; the ro-
tation will stop and the dumbbells will fly with

the same velocities as before the first impact.

2.7.46 h= H(-—3m2_)2,

mi+6ma

2.747 M = u(u — wR)R.

w M
R (nR?)

2.748 N = p(u —wR)Rw.w =

2.8 Statics

281 T=98H,F=138 H

2.82 F=0,98 H.

2.8.3 h~700m

2.8.4 Neighboring strands form an angle of 120°
2.85 mg = %

2.8.6 T~2,6 H;a=arctg(3v/3).

2.8.7 z=3F

288 lp =2l -1

289 T= 2T =509

(2tga)? ~ (2sina)”’

2810 Fa = 8 P = 2

cosx

2.8.12 p = tan(“g).

_ _ 1
2.8.13 dpge = do +2R(1 — L),

_ (pi—p2)
2.8.14 tga = (1;m;2).

2.815 = I

2.8.16 f, = F(L)"

2.8.17 F = Fye 1.

2.818 a.Fy = F, =98 H; b.F, = 24,5 H, F, = 171,5 H.

2819 m<7,5g.
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2.8.20

2.8.21

2.8.22

2.8.23

2.8.24

2.8.25

2.8.26

2.8.27

2.8.28

2.8.29

2.8.30

2.8.31

2.8.32

2.8.33

2.8.34

2.8.35

2.8.36

2.8.37

2.8.38

2.8.39

2.8.40

2.841

2.8.42

2.8.43

2.8.44

m = \/mims
Am = (B)ymgtga

_ pMA2m)r »

ETORE, excess” and “deficiency” are

Ami
possible.

o =arctg(3).

T = "'Q’%L;P:mg\/l—ﬁ-(%)Q

_ (2n—1)mg
Tn - sqrt3

P = (3)mgctga

v

1
3
I<L<I1+p2

a < arctg2p.

I

o >

coln

ctga
3

cosp = , consider u > tga.

tga <

==

F = %la = 0atpy > HF =

9l bp? = Ap+ 1, tga = % at pu = 3.

(I—p1p2)
(2p1) -

tga >

’ F(l-‘ruh)
L (D)

sina =

uR
(I+R)+/1+u?

Reasonable

For = mg; Fp, = "2, one spring is compressed,
the other is stretched.

F = pmg(v2 —1)

3 OSCILLATIONS AND WAVES

3.1 Small deviations from equilib-
rium

811 F' = —2cosa = —2F o= [z <[] =

dU = 2F cosadx = 2F ML:EQ: 2F{dx

foU dU = [ 2F¢do=2F [ do = Ffz

Fﬂ?gimUQ _ 2F
T T 2 U= Ty o

3.1.2 F = —kx - spring force
dU = Fdx = kxdx
2

I U = [T kade=k [ ado=| 2

ka2 vim
8.1.83 a) vy = Tow = T/ = 02 = B0 | = | o
0 0 0\ m 0 m z2

b) FF = —kx is the elastic force of the spring (ob-
viously), since in any case in a normal spring
pendulum the return force is equal to the elastic

ka?
2

force of the spring. Then: U =

3.14

3.1.5 OX: F = —mgsinp=

U= [y dU = [; mg%du=| "9z

3.1.6 Vyar = Aw = xoﬂ

3.1.7 E1 = Es
2 2 2
mygx; __ mgTp ry _ R 1 _ R
2r_2R:>x§_r:w2_ r

3.1.8 ma, = —qEsing = [p—small] ~ —qEp = —¢E2*
mi(t) + 2E2(t) = 0

Z(t) + 255 z(t) = 0 - we got the harmonic motion
equation.

2qF

w = ml

_ _ 2qF _ | 24B=3
Vo = TowW = Tg il = m = 102

3.1.9 dU = Fdx
F =mgsinp = mgy=
U=fy dU= [fmggts = 34
Jo wdz = 7 - L;

29



3.1.10

3.1.11

3.1.12

3.1.13

3.1.14

3.1.15

3.1.16

3.1.17

U, = 2"']?‘1 - initial energy of the system.
U = qu + fgi - system energy after bead dis-
placement
2
AU =Uz — U= kQq(- -7~ 225&3
E, =AU
"t = P Ao = /gl = o, fmigle
F,=kAl =kxcosa
mg = 2F, cosa = 2kxcos®a
m = 2kz cos® a
g
_ 2mg o Gmg

a.F = —2m = RV3.F' =

_A gR
v=S0

_ 1
Q=01

MU?

mg(zo+ )2 _ mu?
RS =+
mv = MU

Solve the upper equation with respect to v:

v = \/%(% +yo)?= \/m(xo +yo)?=

T+ 5)

Solve the upper equation with respect to U:

\/(M+m)l (2o +40)? \/(ﬂco+yo)l (zo +yo)?=

Yoo/ T(L+50)
©® x5
Tonin = mg cos g~ mo(1 — %)= | mg(1 — 54)
2
ma = Tnae — Mg = Tnae=m(5 +g)

mv

mgl(1l — cos )= - Law of Conservation of

Energy

glig*= 258

Let us substitute this expression for the velocity
into the expression for 7},,,,:

v? = 2gl(1 — cos ) ~

2
N:mcosgo%mg(lf“’;): mg(1 — 2R2)(1)
N+A=m(a+g)= m(% +9)

mv

- Law of Conser-

mgR(1 —cosp) =~ ng%Q—
vation of Energy

N+A =m(EL 4 g)= mg(1+ )=
(2)

Then we solve the system of equations (1) and
(2) and obtain that:

mg(1+ %2)

A=R

3N+A

3.2 Period and frequency of free oscil-

3.2.1

3.2.2

3.2.3

3.2.4

325 1T

3.2.6

3.2.7

30

lations

a) The equilibrium position is at the level of the
centre of the wheel.

F=—kr=[0%= %] = mO%z
The values of the velocity and displacement of

the load are repeated after timet =7 = 25—7{

The velocity vector will only change its direction,
and the displacement will change sign.

b)Q:\/%

R = x, since point A is always at the same level
as the weight.

T:27r\/%

F=—-kAl=mg= k=37

T =2m, /280 =27, /&
mg g
T1:2’/T\/%,T2:2’/T\/%

k' = 2k + 2k - since the spring is split in two and
the length of each half is é2

Ty = 20 /T =

T _

T =2

a)k/_k1+k2:>T1—27T,/kl+k2
_ _kik _ m(k1+k2)

b) kl— k11+132 :>T2—27T #

Ok =k +ky =Ty =27 T +k (does not de-

pend on the distance between the walls)

T=2m/l =114 -248cm
T = 271',/9% =[¢g* =gsina] =27 gsilna

a) Ty :27r\/§,T=

mi& = —(mg + F)singp =

_ [/ mg+F
w = ml

—(mg+ F)7

% —me P = mg(i;gz;TZ)

b) mi = —(1/(mg)? + F2)sing

mi = (/g T F)3
R P




3.2.8

3.2.9

3.2.10

3.2.11

3.2.12

3.2.13

Using the law of gravity, let us write down the
equations for determining the free-fall accelera-
tions, taking into account that the acceleration
above the field will be greater than far away from
the field

go = %FRG,OO ~ 47t RG py

9= 9o+ gk~ go+47RG(p — po)

Let’s write down the ratio of the periods of os-
cillation of the pendulum given by the problem
condition

a=T7h =0, 1;¢6=F =1+107°

Let’s express the ratio of periods through the
values of free-fall acceleration

52 — gotg _ 1+ r(p—po)

go Rpo
2
r=E-UR0 30 km
P—pPo
Ty = 27 é,Tl = 27”/9%
_ GM * GM
9= "RrRz>9 = ®+H)?
g _ (R+H)? « _  gR?
- Rr 79 T ®mrA2

Z
T =2r B 1
ATy =Ty — Ty = To(BHE — 1) = 2 min
AT, =T, — Ty =To(BtE — 1) =6.75 s

F = 2T'sing

mi(t) + 2T sinp =0 (singp ~ ¢ = 7)
i(t)+ 2La(t) =0

w?=2L o 7 = miu”

mi(t)— F =0

F=kQ(=ap ~ wrar)

F = -9k, ~ —tkge

#(t) + e ()

w= /9 - [

F=mgg

mi(t) + "ga(t) =0
E(t)+ £x(t) =0

_ _ R
w=E=T=2m/8
t:%:ﬂ\/gzzﬁmin

g

mi(t) + F =0

Fzmgcosgo:mg%:w:\/%éT:Qm/g

71'\/% ~ 42 min

_T _
tl=5=

3.2.14

3.2.15

3.2.16

3.2.17

3.2.18

3.2.19

3.2.20

3.2.21

31

ma:Ffrl_Ffr2+F_F:Ffr1_Ff'r2
Ffrl = ;ngngrx)
Fppg = umgg —x)
pmg(l+z) pmg(ltz—l+z)  2umgz

pmg(l—=z) _
; =

ma = 1

() + 2p(t) =0

l l

(g*)% = a® + g*> — 2ag cos a

g* = \/a® + g% — 2ag cos a - Cosine Theorem

T=2r | —L—
v/ a2+g2—2agcos a
The weight of a pendulum in space is zero.

mi(t) + mQ2(R + [)sing = 0
P(t)+ Q*(R+1)p =0
() + LIy = 0

TV rn
mi(t) + kxr — mQ%x =0
i)+ (£ - 0)z(t) =0

T =

w = % — 02
Ie =Y M = mgxsing—M glsinp= o(mgx—Mgl)

I = MI?+ ma?
(M1 + ma?)p + (Mgl — mgx) =0

. Mgl—mgx = _
¢+ Ermez P =0

o g(Ml—mzx)
w = MI2+ma?

— o
W=AB

2

Ey="-=p8=%

mgla® | ka® _  2/mg | k _mg | k
s+ =2t (G g)=a= G+ 3
2_9 4 k
w_l+4m
le=SM

R*(M + m)$ + mgRsine =0

W = o M = m(fs — 1)

R(M+m)



3.2.22

3.2.23

3.2.24

3.2.25

3.2.26

3.2.27

a) 2mi(t) + 2mgsing = 0
E(t) + g=a(t) =0
b) w? = 3

E, =2mgR'(1 — cosp)=2mgv R? — [2(1 — cos p)
Ep ~ 2mg\/21227l2 (PQ

o= 2mgv R2—12
- 2
_2mv2 _21’ruqu2 _27nR2 -2
B =2= =2 =750
ﬁ 2mR>
2
2 _ | gVRT_I2
w” = R2
o
w=,/%
Vi
E, =k o ok
P 2 -2
2 2 2
_ mwv Iw® _ 2mu _ 2m
Ey="-+5="-=0=%
k
w=1Vam

I = mR? +md?, where d is the distance from the
past axis to the present axis:

I =mR? 4+ mR? = 2mR?
_ 2mR?* __
L=="p =2R

m

TZQ?T\/ZZQW 2R
g V g
g
2R

o=V

l
mixe = ma(l — Tc) = Te = A=
klxc = kz(l — {Ec)

_kamal _ _mal \ _ _kamyl
mi+ma k2(l m1+m2) T mi+me
ki om
kQ - mo
.. M2
k — k1ka — k1 my — ki1mg
k1+ko k1+k1% mi+ma

W= ki ky k(mi+m2)
- ma - mao - mimsa

wWHD _ V3
wH2 2
Let us denote the stiffness of the springs of the

molecule model k, the mass of the balls - oxygen

atoms M and the mass of the ball - carbon atom g 9 28

m (m/M = 12/16).

Making oscillations of type a), both oxygen
atoms oscillate synchronously relative to the
fixed carbon atom. This is due to the fact that by
virtue of the symmetry of oscillations of oxygen
atoms on the carbon atom at any moment act
on both sides equal in absolute value and oppo-
sitely directed forces that "balance” each other.

Therefore, in case (a) oxygen atoms make free
oscillations, the period of which is equal to

_ | M
Ta—27T T

At oscillations of type b), equal in absolute value
forces act on the carbon atom, and they are di-
rected in the same direction. If the ball - car-
bon atom is divided into two equal parts, it is
clear that they will oscillate as one whole: equal
forces always act on them and, consequently, the
ball-halves and any moment will have the same
acceleration, velocity and coordinates. The fre-
quency of oscillation of the molecule CO,, is
equal to the frequency of oscillation of a system
consisting of an oxygen atom and half a carbon
atom. Thus, the problem is reduced to the de-
termination of the period of oscillation of balls
of masses M and m/2 connected by a spring.
Such balls oscillate about the stationary cen-
tre of mass of the system. If the length of the
spring in the unstretched state is [, then the cen-
tre of mass of the system is at a distance I 577
from the ball of mass M. Therefore, we can con-
sider that the ball of mass M (oxygen atom) os-
cillates relative to the centre of mass on a spring
of length

— m
h = lm+2M'

The stiffness of a part of the spring is greater
than the stiffness of the whole spring. Since the
stiffness is inversely proportional to the ratio of
the length of this part to the length of the whole
spring, the stiffness of the part of the spring is

kl — k% — kmtf]\/[
The period of oscillation of a ball of mass M on
a spring of stiffness &; is equal to

/ M /" mM Ty, /1 2M
Tb = 2’/T H = 271' 7k(m2M) N T: = 7mtn =
/14 2L

Since £ = 18 — 4 then:

Ty, _ 8 __ /11
7 =3/1+3= .
Hence, the ratio of frequencies:

Yy

Vg 11

T:2w\/§

_mv2 MU?
Ek—T"‘ D)
mv=MU = U =737

2 2, 2
_ muv m v __m m 2
Ep =T 4 s = 2(14 2

B=530+5)

3

mg .2

2
E, = mgl(1 — cosp) =~ mgl%5 = Tz



3.2.29

3.2.30

3.2.31

Figure 1: For the 3.2.31

_[ma
o =]

T — 921 I(m+M)

Mg

This system can be considered as oscillations of
four pendulums on springs of stiffness 2k each.
The stiffness of the springs increases as the balls
oscillate relative to the centres of mass of each
system consisting of two balls and a spring (the
centre of mass of this system is the centre of the
spring).

T =27 kﬂ*ZQ’N\/%
_ T _
)t =7 =5V

b)to = 3T =

3 m

2™V 2k

When the thread is twisted, the force is propor-
tional to the angle of twist

F=—-kp

Iop = —ked

TO = 27'('\/ %
Likewise

(Io + 1)p = —ked
T2 _ I+l

2 = 1,
I=Iy(-1)

Let spring is stretched to the x.

h=y /L2 Lt =L\/3+1z

h=n L2 — Lo

E, =k E, =k

W= i

By = 2% — 1329 1)

ag =

wo = /2

w1 tm g)7w2—2w1—2 Mg

3.2.34

By=m2 s pg=1n
o e — _ mg,2 _ mg
E,=m'gr =mJgr = Fo* = a= 2
— 1
T =2m 59
T=2m/2
«
_ m()? M (i)
By ==~ +=3
Six = Sex’ = 2’ = %;
_ pHS1(S1483) (22
Ek = 25, (:L' )
/8 _ pHSl(SlJrSQ)
- 2S5y
_ x ' pgSia’ Si a2 _
E, = mg5 + MG5= 5 T SrgST=
pg51(51+52)x2
2S5

S PEACRES)
255

T = 271'\/%
3.2.35 w= \/%
3.2.36 w =

3.2.37 T;

[t 2]

—27r,/ —27r,/H1+AH

M = pleS:>H1 pr

M +m = p,HoS = Hy = MEm

PuwS
M — TDprgS

472
_ T?pugS
M+m= yr
T2pwgS _ TipwgS _ puwgST>-T7)
m = s — S0puds — Pudo =02 ~ 900 T

3.3 Harmonic motion

3.3.1

33

The coordinate depends on time according to the
law

x(t) =
Differentiating by time, we obtain the time de-
pendence of velocity

=A% d 7 coswt

A cos wt

dt

v = —Awsinwt

Similarly, differentiate the velocity to get the ac-
celeration

Aw

dt = sm wt



3.3.2

3.3.3
3.3.4

3.3.5

’ a = —Aw? coswt

According to Newton’s second law, the force act-
ing on a body is defined as

F=ma

’ F = —mAW? coswt = —mw’a

By Hooke’s law
F=—kx
Where is the stiffness of the spring

k= mw?

a)x = Hsin(3,13t). b)x = 5cos(3,13t). Displace-
ment is measured in millimeters, time in sec-
onds

T =0,06 s

From 3.3.1, we find that velocity depends on
time according to the law

v(t) = vg sinwt

Given that kinetic energy is defined by the ex-
pression

By = ™~

The dependence of kinetic energy on time will
have the following form

Ei, = Eysin® wt

The moment of time when E}, is E), = % is de-
scribed by Eq.

sin? wt = %

Whence

sinwt = @

This will occur at the nearest moment equal to

t= 1

The first part of the path "up to the nail”, the

pendulum will pass in time

T=tom /L=m /L (.

After hitting the nail, half of its length remains
in place and the other half continues to move at
the same speed

Thus, the length of the pendulum is halved.
l— 1L
Making the substitution in (1)

— €
TQ—’]T 29

Thus the total period of oscillation
T=T+15

T=(1+ 1/\/§)n\/§

3.3.6

3.3.7

3.3.8

3.3.9

3.3.10

3.3.11

3.3.12

3.3.13

3.3.14

3.3.15

3.3.16

3.3.17
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Similarly to 3.3.5, the oscillation will consist of
two half-oscillations When a body slides along
a trough of radius R, its motion, from the point
of view of kinematics, is no different from the
motion of a mathematical pendulum with a long
thread R Thus, the period of oscillation is

R
T0:27T —
g

Ie. half of the chute, it will pass in time

T1:7T E
g

Similarly, for a gutter of radius r

TQZW\/?
g

Thus the total period of oscillation

T=T+15

T:(\/§+\/§>

t= ﬁ; will not change
t=m (Qﬂngp) :
Focused at distances | = m(n + §)vg/7, where

n is an integer

The number of intersections is equal to an inte-
ger part of the value %vo Vi

T = (Hnvig

1= Acos[r(1 — Tlo)]

t =7+ 2arctyg, /%]\/ﬁk

_ T /1 _ / — !
t = 5 @ at v —S ,ugl,t = ﬁ

(Ml7)a7“ccos% at v > +/ugl, where '

Vv — pgl.

+

w= % at A> R,w =% at A =2R. Increase
u=5%/E where n is an integer.

_T
f=T 41



3.3.18

3.3.19 v

3.3.20

3.3.21

3.3.22
3.3.23

3.3.24

3.3.25
3.3.26

3.3.27

3.3.28
3.3.29

3.3.30

3.3.31

3.3.32

3.3.33
3.3.34

3.3.35
3.3.36

a)r = 74 (coswt —1).b)x = T2 +I(coswt — 1). The
x-axis is directed vertically upwards, the origin

is at the initial position.
cos t,r=——2Y g _k_¢
- m+M m+1\/[ /k(M+m m-+M "

From the moment the ball hits the wall for the
first half-period there is compression and return
of the spring to an undeformed state. Then a
second strike at the moment when the spring is
not deformed, after which the balls start mov-
ing with constant velocity v. The period T =

21

oy
— mi ma — my —
v = (1 + 22 coswt), va (1
coswt).
T
Fraw =2F;7 = 2

A= \/Ag + Z—; — coswtyg. When tg = n(2n+
1)w, where n is an integer, the amplitude is the
largest; at ¢t = 22 it is the smallest.

2A0F
k

xo = uy/mk.
If u > pg/% a harmonic oscillation with am-
plitude A = ’”,;Lg , at lower u an oscillation with
amplitude A = usqrt7.
_ Kl
H= (4Mgn) -
_ g(M+m)
BC =1 (w?)
F = —mw?r = —mw?Acos(wt + ), the force

mw?A is reached at time ¢t =
is an integer.

(mn=%) "where n
w

When w?A > g, the load bounces and its de-
tachment from the surface of the diaphragm oc-
cursabove its middle position.

_ F
A= (mw?) "
h A+ (20.)2) + (2_(]) at WQA > g.

A = (%)V7?n? + 1, where n — integer.

At an amplitude A > 107!! ¢m, the acceleration
of the plate face is much greater than the accel-
eration ¢ = 0.8  that friction can provide, so
the load practlcally stays in place with almost
no effect on frequency. At amplitude A < 101!

cm, the weight moves with the end and affects
the frequency in a noticeable way. v,,4; = &= ~

@w) ~
1.57-1076 =

Tvgtgo
(2n)

Ugy =

3.4 Overlapping oscillations

3.4.1

3.4.2

3.4.3

3.4.4
3.4.5

3.4.6

3.4.7

3.4.8

3.4.9

3.4.10

3.4.11

3.412 F

3.4.13

3.4.14
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There will be a superposition of horizontal and
vertical harmonic oscillations with frequencies

wi = /2 andw, = /22 At ky # k, rectilin-

ear motion is possible only vertically and hori-
zontally.

A body deflected from its equilibrium position by
a distance r needs to be given a velocity v = wr,

where w = |/ £.7 = 2=,
m w

a. The trajectory is an ellipse with semi-axes A
and 2. The limits of the variation of the distance
from 2 to A.

b. The trajectory is an ellipse with semi-axes
\/;(A2 + 5+ \/(A2 + 52— 4(22)2)

20 = %.

When 2¢ = 7n, where n is an integer, the screen
shows a segment; when 2p = £75 + 2mn— cir-
cle. The length of the semiaxes of the ellipse is
Av/2cos p and Av/2sin .

Ellipse with axes vertically and horizontally.

The segment along the diagonal of the screen
will become an ellipse extended along the diago-
nal. ellipse, whose semi-axes will gradually be-
come equal in length. Then a circle will appear,
which will begin to turn into an ellipse stretched
along the other diagonal of the screen, and so on.
After a time of 2% 2” the whole cycle will repeat.

T, : T, =1 : 2, except in the case d, when T, :
T,=2:1.
If T, : T, = p : q, where p and ¢ are integers,

then in time pT, = ¢T, the point will return to
its initial position. If T,, = T}, the trajectory of
the point is an ellipse.

Wy Wy =p:q=3:4

_ 2F [mi _
= GremTm) except for the case % =
%, where p and ¢ are odd integers.

Hmin

= k[Ag cos(wt + p2) — Aj cos(wt + ¢1)].Emazr =
g[A% + A% — 2A1A2 COS((,DQ — (pl)].E(w = E[A% +
A3 —2A1 Ay cos(pa — ¢1)]. When s — o1 = 7 the
average energy takes the highest value, when
pa — @1 = 0 - the lowest.

F = 2kAsin(225%¢) sin(22E14). B, = %(A} +
A3)
N = (3)wFyAsing



3.4.15

3.4.16

3.4.17

3.4.18

3.4.19

— . /3k _ . /K
a.wy = mo W2 = m’

b.'Ul _ v(coswat+cos wit) _ v(coswgt—coswlt);xl _
v(E+2
_ 1wy, _
o = B — Ax = o
cv1 = v(2coswat + coswit), vy = v(2coswat —

2 4 1
U(W1+w2).
2 ?

2v
o

coswit);x1 = Tg = Az

The motion of the atoms will be the sum of the
following motions: a) all atoms move progres-
sively with velocity vg; b) the carbon atom is sta-
tionary, and the velocities of the oxygen atoms
are equal in modulo and oppositely directed:

vél) = Zvjcoswit,w; = 1/4; ¢) oxygen atoms

move with the same velocity v, coswot towards
the carbon atom whose velocity which is equal
to

—v2 2 coswat,wy = k(35 + 2)
Shift of the oxygen atom toward the carbon atom

Az = ol 4 (1422 + L)

2] — 12
m w2

w2 2 Fl
T _ v(witws)[l(wF —wiwatw3)—g] L = 2
mar =~ MWD 2g] L T e

k= m(wszg) )

App = 852 4

W12 =

S

3.5 Forced and damped oscillations

3.5.1
3.5.2
3.5.3

3.5.4
3.5.5
3.5.6

3.5.7

3.5.8

See Fig.
See Fig.

See Fig. If the shocks follow each other at inter-
vals of time T}, then amplitude

Ap = \/[1:70 + (7725)]2 + ;Eg
If at intervals %, the amplitude

A, = \/[%o + + 3. for odd n

A, = \/:Té + 2 for even n,w = 3%
About 63 cm.

Potholes on the road on the entry side are less
frequent than on the exit side

Before the course and speed of the boat was
changed, there was a resonant swaying.

As the amplitude increases, the loss per period
increases. When they are equal to energy gain
due to the shock, further rocking will stop.

3.5.9
3.5.10
3.5.11

3.56.12
3.5.13
3.5.14
3.5.15

3.5.16

3.5.17
3.5.18
3.5.19

3.5.20

3.56.21

3.5.22

3.5.23
3.5.24
3.5.25

3.5.26

3.56.27

3.5.28
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N =W?
4 (k2 4 m?y  _py2 hence m9Y = —kx — bu.
See Fig. a: after a single shock there is a gradual

damping of oscillations;

Fig. b: with periodic shocks, initially the oscil-
lations swing, and then,when the energy gain of
the order of pv compares with the loss per pe-
riod having the order bv?T, the oscillations are
established.

At yw = 1.

The speed of the oscillator is less in n?, n® times
its initial velocity

In 75 the energy will decrease fourfold. In time
2 the energy will be halved.

See Fig.

v = 10% s7Yw = 7 -10% s71. The error in re-

placing w by wy is quadratic on the small value
of L.
wo

ay~1072 571
by =73.

_ _ _Q
@.Q =355 " = @

b. About 50 times for Q = 10® and only 1.5 times
at Q = 10°

v =r2____2
T p— 7i7m).

2p if
m

~
~

21y .
Umaz =t>1
2wp

(2mym)

if 270 <« 1

Umax =

— _Fy
- (mw?)”

A

a. A= [Tn(wlgio_w%)],wo =14/ %
b.A= [m(w?)_wz‘)]awo =1/ %

A= T

m(w?—wd)]’
sen so that Oa‘c time ¢t = 0 the initial conditions
x(0) = zg, v(0) = vy.

The quantities B and ¢ are cho-

zo = FO/[m(wi — w)],v0 = 0, then B = 0.



3.5.29

3.5.30

3.5.31
3.5.32

3.5.33

3.5.34
3.5.35

3.5.36

3.5.37

3.5.38
3.5.39
3.5.40

3.5.41

The additional acceleration associated with free
oscillations multiplied by the by the mass of
the oscillator is equal to the additional internal
force.

Let us consider an example of vibrations of a
body attached to a spring. Forced vibrations of
this body with a frequency less than the natu-
ral frequency can be imagined as free vibrations
on the same spring of the body with additional
mass. The force with of this mass can be con-
sidered as a forcing force. It is directed against
the elastic force and therefore in the direction of
displacement. The forced oscillations with a fre-
quency greater than the of the same body with
an additional spring attached to it. The elastic
force of this spring can be can be seen as a forcing
force. It is directed against the displacement.

See Fig.x(t) = m(j;fwz) sin(£520t) sin (<520 ).
z(t) ~ m(ffw()) sin(“4=0t).

z(t) ~ 25%0 sin wot.

At |w — wol7, the initially occurring beats grad-

ually transform into forced oscillations due to a
decrease according to the law ¢=7* of the term
changing with the frequency wy. At w wo
the initial swing of oscillations with linearly
increasing amplitude smoothly decreases and
forced oscillations are established. The charac-
teristic establishment time is equal to the time
of damping of free oscillations 7 = %, when their
amplitude decreases by e. times.

a.F = —2Aymwg sin(wot — ¢). b.A = —Fy(2ymuwy );

in 22 times.
(2y) times

v7= (2zowm) "
wo=550s"1,y=50s"1,Q=5,5.

About 10° s.

— w[])\
v = )"

The velocity of the particles after the time of
flight v = £2(1 — coswt); their average velocity
fo - the highest velocity Vyae = 2L

(mw)? (mw)

is attained by these particles at a distance of

L m(2n + 1) from the source, where n is an in-

teger.

Vav =

The velocity of the particles emitted at time ¢ =
Tv= 7% (coswt—1); their average velocity v,, =
(TS—‘U’J); the highest velocity v,,qs = 2Lt is reached

(mw)

3.5.42

by these particles on the other side of the source
at the same distance.

The velocity of the particles emitted at moment
t = G = Lo ginwt; their mean velocity
vqee = 0; the highest velocity of these particles,

Vmaz = (15—2)), is attained at distance (75732) from
the source.

Cycloid; the average velocity vy, = t :; SJ) is di-
rected along the z-axis. Ifatt = 0 v, = (;5?)

and v, = 0, the particle will move on a circle of
radius r = (:752)

3.6 Deformations and stresses. Wave

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8
3.6.9

3.6.10

3.6.11

3.6.12

3.6.13
3.6.14
3.6.15
3.6.16

3.6.17

3.6.18
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velocity.

F.(N-1)F
k> &

Increase by 104 m

k=E£5 F=ES(55).

L
k= FEa

See Fig. | = 3 mm
108 to —0.5 to 10® Pa
F=5-10"H

At 1.2 —-10"%m

mal

Al = (2ES)"

IS

2
7~ Ea
Amin =76

_ k
V= k+2ko)

.k
V= (k+2ko)

Increasing. v = 0, 5.

Y= 3(1E2y)
Increases by about 30 m. The density of water is
greater by 50 % The energy in unit volume is
2.5- 106 -Z;.

The horizontal component of the tension force of
the thread is equal to F'; by the slope of the non-
horizontal part of the thread, the vertical com-
ponents of the tension force are found, and by
them the required forces.

See Fig. The forces applied to the bending points

172,3 : Fl = *L0b7F2 = FO(% + %)7F3 — #.




3.6.19

3.6.20

3.6.21

3.6.22

3.6.23

3.6.24

3.6.25

3.6.26

3.6.27

3.6.28

U = —Ce.
a.% = —p°2.b.F = Fye;c = %

a.e = _Tb,w = (bez);u = —ce = %b. b.c = %.
a.% = pcuS = —pc?eS. b.o = —Fe,c = %.

5 ’“Tm Let’s make a thin rod in a sheet of steel.

Its transverse displacement is ”interfered” by
neighboring parts of the sheet. The stiffness of
such a rod is greater than that of a rod with a
free side surface.

550, 1400 and 340

2 = PP=R)
[po(p—po)]*

With compression smoothly decreasing toward
the wave front, the speed of sound is greater at
the more distant sections, the disturbances of
the medium catch up with each other. In the
case of rarefaction, the distant sound velocity
is lower, they lag behind, and the disturbance
blurs.

See Fig. Particle velocity and the height of wa-
ter level rise in a running wave are related by the
relation % = %. We equate the rate of change
in momentum with the difference in pressure

forces; phcu = pghAh. Hence ¢ = v/gh

wl
2arcsin(ﬁ

c= DAt w < wy e =wpl,wy =~ 0.5-10

Hz.

3.7 Wave propagation

3.7.1 p = pcbS.
Apcl . . __ A
3.7.2 a.q, = Apc®. b = pp T = TPZ.
3.7.3 P(to — =), where r is the distance to the sensor.
3.7.4 The momentum flux density g, = pcu(z — ct).
3.75 F =1400 N
F —F . _ F

3.16 u = (Gupm€ = GE P = Pl + wgl- The

momentum p = 0.5F7 p’ = Fr; energy W =

05F°7 yy/ — _F2r

(SVEp)’ SVED)
3.1.7 A=125-10% J, & = 0.25.

for g — _C1C2 FL _ /FI _ /FI

378 See Flg.,u = C11+§2 F7”7 Cc1 = 7/17 Coy = Z

3.7.9

3.7.10

3.7.11

3.7.12

3.7.13

3.7.14

3.7.15

3.7.16

3.7.17

3.7.18

3.7.19

3.7.20

3.7.21

3.7.22

38

The vertical forces Fy 3 = @ and F, =

2(F—pv?)b
2E—pv")b  \When v —

the string, tend to zero - the string ”does not re-
sist” bending. Ifthe forces on the are fixed in one

\/ %the forces, acting on

way or another, then ifv — %the deformations

of the string increase infinitely. deformations of
the string.

The velocities of the "’bend” waves and the distur-
bance will coincide, which will lead to a sharp in-
crease in the amplitude of the waves in the tire.
This in turn can cause the tire to rupture.

The speed of the boat and the speed of the wave
that the boat excites in the river coincided.

Flat front. The direction of propagation forms
an angle o with the normal to the of the interface
(sina = £).

o1 = a,sinag = (%)sina.

Engine noise propagates slower than the shock-
wave front generated by of a supersonic aircraft.

sin ag = Z—;
Only the direction of the refracted wave will
change:

. __ cosinag

Sl = c1+vsina;

where ¢; and ¢y are sound velocities in still air
and water, v is air flow velocity, «; is angle of

incidence.

a. The parts of the wave front farther from the
shore move at a greater speed than those less
distant. Therefore, the angle between the wave
front and the shore near the shore decreases. b.
See Fig.

A complete internal reflection is possible at the
depth interface.

See figure showing “sound rays” that are orthog-
onal to the wave surfaces; in the wind direction
the sound goes almost along the Earth’s surface,
and in the opposite direction it goes away from
it.

vip =vo(1£2);v3 =1l — (%) cosal.



3.8 Wave superposition and reflection 3.8.16 In the presence of the spacer, the coefficient of

3.8.1

3.8.2
3.8.3

3.8.4

3.8.5

3.8.6

3.8.7

3.8.8

3.8.9

3.8.10

3.8.11
3.8.12

3.8.13

3.8.14

3.8.15

In the first case (see Fig. a to Problem 3.8.1) the
kinetic energy is zero, and potential energy U =
2F. In the second case (see Fig. b to Problem
3.8.1) the kinetic energy K = 2F, and potential
energy is equal to zero.

Spreading strain waves with e = —0.5- 1073,
See Fig.

See Fig. P = 2pcwA coswt. Wavelength A = %
There is a velocity node and a pressure beam
near the wall. The first pressure node is away
from the wall at a distance of %

See the figure in the problem condition. In a
“non-inverted” displacement wave, the sign of
the deformation is opposite to the sign of defor-
mation of the incident wave.

A = 32, At the end of the rod there is a velocity
beam and a pressure node. The first node of ve-
locity is at a distance % from the end of the rod
(see Fig.).

When a wave reflects from the inner surface of
the glass, it creates a region of of high tension
(stretching).

m

=250 =

CT

= lem.

=9

I=L(L~ Carcsin®) = L(1 - LaresinZ).l =L

atoy > o0,l=%2atoy~o.

P = pcu = 3.9 -10* atm. The force applied to
the end of the rod from the side of the wall gen-
erates a compression wave in it. Reaching the
free end, it is reflected from it. The reflected
wave is a tensile wave. When the reflected wave
and the force wave from the wall overlap, the de-
formation disappears and the velocity of the rod
sections changes sign. When the front of the re-
flected wave reaches the wall, the entire rod is
undeformed and its contact with the wall ceases.
The contact time 7 = 2l =4.107" s.

vl:v,UL:vH—%l.

vl
1

U1 :O,ng

Urefl __ VPeiE1—vVp2E2 Urefr _ 2V E1p1
Ufal V1 E14++Vp2E2’ ufal VEip1+VE2p2

D~ d218 o 11.1073,

p2c2

3.8.17

3.8.18
3.8.19

passage of the wave received by the sensor in-
creases from 0.25 to 0.41. Secondary signals
(echo-signals”) appear, following each other at
%l intervals, the power of which decreases geo-
metrically. At high frequency of signals repeti-
tion ”echo-signals” overlap each other, then By
selecting the thickness of the spacer it is possible
to achieve almost complete passing or reflection
of the signal.

__ (P1c1—p2C2\2 _ 2ley
n= (P161+ﬂ262) ’L T oex
L =2 =1. No

o

[y =1.25 mm, I = 2.5 mm

3.9 Sound. Acoustic resonators

3.9.1
3.9.2
3.9.3
3.94

3.9.5
3.9.6

3.9.7

3.9.8

39

A=2=6,6m

I =4 =825 cm.

c=12,

v = 6.8 <%, vy = 6.8 1078 =, = 0.11 mm,

2o =1.1-107" m, P, =3-10"* atm, P, = 3-10712
atm

I>35Y

m?2

F =2Lpcv. At w < £ there is almost complete
pressure equalization in the of the air jet, so the
emission of sound is weak

E = 27R%*w?A%pc. The pressure amplitude in
the wave is inversely proportional to the dis-
tance to the center of the ball.

a. Two divergent waves: velocities
_ _F . x
U= 550 cosw(t F %)

(the coordinate z starts at the cross section
where the source of the force F is located) and
deformation ¢ + 2.

b. A standing wave occurs between the force
sources:

— Fo 5 L ;W
u= g cosw(t — 5;)cos £E;

outside the sources are two scattering waves:

Fo

U= Spc

coswl2ccosw(t — %)

(z-coordinate counting starts at the point lo-
cated in the middle between the sources of force
F). If at the distance [/ there is an even num-
ber of half-waves, the power of the resultant the
power of the resulting wave is maximal, if there
is an odd number of half-waves - the power of the
resulting wave is zero. is equal to zero.



3.9.9

3.9.10

3.9.11

3.9.12

3.9.13

3.9.14

3.9.15

3.9.16

3.9.17

3.9.18

3.9.19

3.9.20

3.9.21

3.9.22

3.9.23

3.9.24

When [ = (1 + n)A\; when I = (2 + n)A, A = 2Z<,
Lw
L = QA, CcC = In "
a. The stress nodes are at distances from the
free end divisible by 3.Fp = Sm"(giL)
A

2mnc
(2L)°

is the speed of sound. We can.

b. See Fig.; w =

WA
(2m)

where nis an integer, ¢ =

v, = n-2500 Hz. At a distance of 25 cm from its
ends.

It will be halved.

Ao

27
. T =
lsin(<L)]

P -
wlsin(ZL)]

A:

v = (2‘1) =8.25 Hz.

As the height of the air column in the vessel
changes, its resonance frequencies change. The
sound is amplified when the difference between
the frequency of the tuning fork and one of the
resonant frequencies of the air column.

50,250,450 m, etc.
v =300 Hz{? = 150 Hz.

To make the instrument’s natural frequency set
as rich as possible. The tone decreases as the
size increases.

The sound of the voice is influenced by the air’s
own vibrations. The corresponding wavelengths
in a helium-oxygen medium will be unchanged,
and the frequencies will increase as the of sound
velocity. The overall tone of the voice will in-
crease. The frequency of vibration of the tuning
fork will not change, the same frequency as the
sound.

F =41?/% = 144 N.

Near the displacement bundles at a distance of

é or é from the end of the string.

Because of the friction between the hand and the
rod, there will be a large loss of energy. They are
lowest for the middle of the rod, where there is a
velocity bundle, the highest for its ends, where
there is a velocity bundle.

The main energy losses are associated with the
transition of the wave from one medium (sap-
phire) to another (air). The transmission coeffi-
cient is. D = 2fairCair. — (7. 10 %(see Problem

PsapfCsapf

3.9.25

3.9.26

4

The power of a passing wave is the same fraction
of the incident wave power whether the sound
travels from air to water or from water to air,
and this fraction is very small. Pressure is an-
other matter. When a sound wave is reflected
in the air at the boundary with water, a pres-
sure beam is formed, so the pressure in the wave
passing into the water is almost twice as much
as the pressure in the incident sound wave. (We
consider only the normal falling wave at the
boundary of the two media; in other cases the
picture is qualitatively the same). When, how-
ever. sound wave falls on the interface out of wa-
ter, a pressure node is formed at that interface,
and the pressure in the passing wave in the air
is nearly zero. This approximation is based on
the fact that pc for the wave and air differ many
times (about 330times). It is possible to calculate
the pressure change accurately. The pressure in
a passing wave in the first medium

2p1c1

p1c1+pace Pfal2

Pref'rl -

where Py, is the pressure of the incident wave
in the second medium. When passing from wa-
ter to air, the pressure decreases by a factor of
about 150.

_ Vmk
M = "Fctgw./ 7

FLUID MECHANICS

4.1 Fluid pressure

411
4.1.2
4.1.3

414
4.1.5
4.1.6

4.1.7

4.1.8

4.1.9

Fy =2000v/2 N. F», = 0.

_ 4 F
P = %aiz
Yes.
F = 27r2P.
F =n(R?-1r%)P.

R—A)?

0= wiar P
The force F; acting per unit length of the circum-

ference of the sausage cross section is less than
the force F; acting per unit length of the perime-
ter of its longitudinal section.

Atdistancel =
of the stick.

d?—d2
ma to the left of the center

3.8.15). The losses will increase about 10* times. 4.1.10 h = 727 cm.
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4111 Fy =4392 N; F, = 4314 N; F,, = 4353 N; ' =78 rotation, its position is stable. This condition is

N. satisfied at
4.1.12 F = (&)pga®(3v3h — v2a) + (1) Pa®V/3. §>4/65(1 =)
4.1.13 Constituent forces parallel and perpendicular 495 A— 34

to the bottom of the vessel: F|, = da*(p — =% -

3 — 8 1 . h
po)gsina, F| = adpog(p%cosonrg sina+2)+ Pa?. 496 V — 147 em®

4114 z=H — (E)(1 + 2)(=2)h.
G+ 25 4.2.7 p=15 L.
4.1.15 h =85 cm.
Pl _ p1
4116 h=10,1m. 428 =1,
= LRSP _ 4m
4117 m = 55~ 429 v = .

4.1.18

) 4210 F=0,8-103 N
4119 A=mr?(h+ 3l5)pgl.
4.1.20 The pressure P, can be found from the equilib- 4211 F = (%)m'%g(l + 2TT)
rium condition of the highlighted thin cylindri-
cal volume in the figure: the force of attraction
of this volume to the center of the planet, equal
to the product of the mass of the volume by the 4.2.13 p= % v
acceleration of the gravity field in the center of
the volume, is balanced by the pressure acting 4.2.14 F' = %

on the lower section,

Py = 3myp*(R® — 1), Py = §myp° RP. 4215 .a.F = pgR(H + £)2. b.F = LoLUTERS

4212 F=1,2-10"2 N.

4.1.21 In the direction of acceleration of the vessel. 4916

4.1.22 8=« —arctgp

4217 m=520¢g
4.1.23 The pressure P(z) can be found from the con-

dition that the pressure force on the inner base 4 2 2\ 3
4218 m = (5)n(R

of the thin cylindrical volume highlighted in the m = (5)m(R+ %)

figure is equal to mw?y, where y is the distance

p

3 3 3(6— —tg®
from the center of the cylinder to the axis of ro- 4.2.19 m; = - (6+5tzia+tg & my = 200 521& o)
tation, m is the mass of the selected volume:
2
P(x) = B0 5] 4.2.20 T = Y379,
_ 1 w?
4124 y = 3-a°. 4221 a.Q=1kJ b.Q=mr2pghH[1 + 55 L(1— 23],
) ) ) 4.2.22 Q = (3)mR*pgH = 410 J, p is the density of wa-
4.2 Swimming. Archimedes’ Law ter.
421 P="+ P 4223 A=25-100J
_ H(p=p1)
422 h =750 4224 a. Can. p[-L5] = (1 + grgturry) (1 — 2).
423 H = {m—phS) ,
[S(p2=p1)] 4.2.25 F = ($)mr3(R — r)pw?

4.2.4 . If at a small rotation of the parallelepiped
around the axis passing through the point O, 4.9.96
the momentum of the forces acting on the par-
allelepiped is directed in the opposite direction

to the direction of rotation. to the direction of 4.2.27 F ~ (m1+2)wl’R.

(gtga)

w= [R—(l4r)sina] "
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4.3 The motion of an ideal fluid

431
4.3.2
4.3.3

434

4.3.5

4.3.6

4.3.7

4.3.8
4.3.9

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

4.3.15

28.5;27.0;25.6 . To the twelfth floor.
AT = 2ghpS.

2
N = pVi]gh + (QVT(Z)]

a. Because of the pressure difference in sections

land 2, the fluid between these sections in the

direction of its movement, a resultant pressure

force greater than of the force acting on the side
’UZS _ 572 2

of section A. b. = %.

Pressure in the vessel P. = Py + pgzx, pressure

in the tube P, = Py + pg(x — H).
F =/2(P 4+ pv?)S

— 2FS
A CEE

h=g;[v? = (50dx)7

P—Po
ﬂ+ﬂo7‘2 g’
(RZ—r2)

2
AP = Sty ogh-

The size of the longitudinal section of the jet will
increase by a factor of 2. The velocity of simi-
lar sections in the jet will increase by /2 times.
Therefore, the discharge will increase by 2v/2
times

The jets will be similar All dimensions of the jet
will decrease by times as the water level de-
creases, the velomty of similar sections in the jet

will decrease by / 5 times. Therefore, the veloc-

From the law of conservation of energy it follows
that the velocity of sections 2, 3of the jet on the
plane will be equal to the velocity of section 1v,
and from the law of conservation of momentum
it follows that

hy = h(l-‘r;os @) ’ ho =

ity of level decrease will decrease in (

(ﬁ)itlmes.

h(1—cos a)
—_—

We need to move to a frame of reference in which
the plates move along their planes. In this sys-
tem, the plates will move as two counter jets
shown in in figure a. Their motion above and be-
low the plane OO’ repeats the motion of the jet
considered in in problem 4.3.13. Then it is neces-
sary to return to the previous frame of reference
(b). v1 = vtg§, v = vctg$§.

(R?—r?)
Cone; cosa = )

4.3.16

4.3.17

4.3.18
4.3.19
4.3.20

4.3.21

The problem is reduced to Problem 4.3.15 if
we move to a frame of reference in which the
counter velocities of the armor and the metal jet
are equal in modulo. v =1 km/s.

h = lcos(t\/9).P = *%in the vertical part of the
tube. P = “%9in the horizontal part of the tube.
a=g(§)*

E=PV.

v= %%(R—J 1), p is the density of water.

If atmospheric pressure is not able to give the

water velocity equal to the propeller edge veloc-
ity v, a cavity may appear behind the edge;v > 14

P

4.4 Viscous fluid flow

441

The force with which fluid layers act on each
other across a unit area surface area AA', F =
n%. In a stationary flow, the resultant force act-
ing on the fluid layer between any interface sur-
faces AA’ and BB'is zero. Therefore, the velocity
gradient is the same everywhere and equals 42

and the velocity at distance zfrom the stationary

planeis %, 0 <z < h, F' = 2.
442 v = %x(h —7),0<z<hQ= mh?’.
443 a.Q = h;% sina. b. o = 8-1078 rad
444 v =2yt
4.4.5 a) The resultant pressure force on the ends of

4.4.6
4.4.7

4.4.8

4.4.9

42

the separated cylindrical volume P - w2?%is bal-
anced by the force of viscous friction 27T;z:l77
Therefore 4% = 2177’0 <z <R b=y (R2

2?). Volume of fluid flowing per unit time, Q =
xR P2

(8nl) -
t=T
t = 32nl
~ (pgd?sina)”

a) The momentum of forces acting on the cylin-
drical interface between the layers is indepen-
dent of the cylinder radius xz, because only in
this case the resultant moment of forces acting
on the liquid between two cylindrical surfaces is
is zero and the fluid moves stationary. Therefore

M, = —x - 2nx - nxd”l M,Cfi—‘j = —27:;[1377“ <
r< R

M1 1 M1 1
b gz (7 = 72)s Wiy (55 — w2)
F:PQSQ—Plsl—p’UlSl( 52)



4.5 Liquid surface tension

451
4.5.2
453 r~ 0.5 cm
454 F = 2(0’1 — Ug)l.
_ k(2rR-1)
45.6 a. A~ 22 b~ 4.
457 a=21cm
458 o= "0",
4.5.9 Less than 0.2 <.

4.5.10 The figure shows forces acting on a section of the
plate of unit length (double arrows), and forces
acting on sections of the lateral surface of the
liquid of unit length (bold arrows): Fz is the
desired force, mg is the force of gravity acting
on the plate, Fy = pgzl and F| = 24— - forces
caused by negative fluid pressure, a- surface
tension. It follows from the condition of equilib-
rium of the lateral surface of the liquid,that
F = P92w2 =0 —o0cosf,cosf =1— ?gi;

From the equilibrium condition of the plate we

have

F, = Fo+mg+20sin 0 = mg+pgx(l+2 %2)
4.5.11 m = 0.55 _Z;
4512 a. h= /22000 4 — 3.9 mm

(pg)
4513 a.z=2sin? /-2~ b.x =54 mm
24/ (pg)

4514 a.q = )220t if o) < g, 4 0y i3 = 0
if o; > o,y + 01.m. About 2.5 km?

4.5.15 The vertical component of the surface tension

force is equal to the perimeter of the wand cross
section multiplied by o cos . Therefore, the vol-
ume of liquid lifted by surface tension does not
depend on the shape of the wand cross section,
but depends on its perimeter.

4.5.16
4.5.17
4.5.18

P’mal‘: r +pg(h+R)
R:

min — % +pg(h - R)
(ZDR
4519 P =Py +20[k + p]

4.5.20 About 3 liters.

4.5.21

0-2
(01—02)%"

4522 h=2r \/MGH

o1+o2+0 02—

TRO
(Ro—r)*

4.5.24 m = 7r?(ph + %‘;)

4523 R = a=120°

4.5.25 h=0,14 mm.
4526 A=14-10"%J

4.5.27 In a thin jet, the sum of ”—52 + pgh + % (here
p,ocand v are density, surface tension and veloc-
ity of the jet, and r and h are the radius of the
jet and the distance to the tap) does not change.
h~2cm.

4.6 Capillary phenomena

4.6.1 b. From the inside

27o?

_ dmo?
A= (pg)

h = (pgR)’ o U =
ergy is converted into heat.

4.6.2 Part of the en-

4.6.3 r=1.5 um.
464 oV =ZL8 bV =1,1 22,
4.65 A =0,4%.
46.6 1o =—1,5mm, ry = 1,5 mm.
4.6.7 Ax:(ﬁ%if0<x<h (pgr),Ax—h—:clf
h= (PGT) <z <ht (pw) =h+ (pqr)
4.6.8 r, = 2.
469 w=2 R
4610 x =2hifl > h;z =1+ hifl<h
4.6.11 t =17° C.
4.6.12 The wetting liquid will move towards the narrow

part of the capillary, the non-wetting liquid will
move towards its wide part.

4613 v =1H(1 - /1- pglsgp),a > pﬁ;’g,x =Ha<
pil(ng'
4.6.14 © = 75 (costy + cosbz).
4.6.15 F = ao(1 — cosb)
_ 2a02
4.6.16 I = 0%
_ _al _ h
4617 h= (g5, T =2m/1
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5

MOLECULAR PHYSICS

5.1 Thermal motion of particles

511
5.1.2
5.1.3
514
5.1.5
5.1.6

5.1.7

5.1.8

5.1.9
5.1.10

5.1.11

K~58-10721 J, /(1) ~1.5-1074 2
Twice as much.

m > 0.01lmg.

V{r?) ~6.4-10"8m
Ar~7cm. At T =100 K d ~ 4 cm.

The lighter, i.e. more mobile particles pass
through the baffle faster. Therefore, at first
the number of light particles per unit volume is
equalized, and the pressure in the section where
the heavy particles were, increases

Pye _ 1
Pr, V2
(n—1)
=
T =nr
In IL%—Z times
_ VTy VTy
N = Neommy Ve = Nigivm- Toward

the first volume.

5.2 Distribution of gas molecules by

5.2.1

5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
52.8 L
5.2.9

5210 v =

5211 a

5.2.12

velocities

a. N = 1.3-10%% 71,
Ny =1.3-10"m=3

b. Ny = 1.3- 1017 m~3;

Ny =6.2-10*cm 3, N, =1.2-10* cm™3

a) N; ~ 10 em™3 | b) Ny ~ 210?22 m™3

T=21K

n =0,13.

n=6-1073.

The temperature will decrease.
=11+

v =300 2.

to +2T )

2
= B0 = I,

fv) = = at vy < v < 2ug, f(v) = Oin the rest
region of v values. The distribution function
f(v)will shift by Av = £Zto the region of higher
velocities.

5.2.13

5.2.14

5.2.15
5.2.16
5.2.17

A Vmin, = U + FT;:,vmam = v+ FT + Av,n’ = n.
b. Umin vy/1+ 352 JUmaz = (v +
Av) 1+7mv2«fiv) vl+me
2EL ! =n. gfié

a. It will decrease by a factor of exp(2LL2). b.p =
poexp( = h) it will not change.
m=10"24kg,r=10""m
hy = 111 km, hy ~ 123 km.
a.n~noexp(t). b. n =10 ecm™3

5.3 Collisions of molecules. Trans-

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

5.3.6
5.3.7
5.3.8

5.3.9

5.3.10
5.3.11

5.3.12
5.3.13

5.3.14

44

port processes

d ~ 0.3 nm.

[ =~ 60 nm

v ~6-1028 s71.em™3; 05~ 3-1028 s~ . em 3

Increased by a factor of 1.5.

i~ 7 '4RIng + (R1 + Ro)?no] Hlp ~
“Y4R3ny + (Ry + R2)?nq] 7t

t =~ 30 ps.

n= Gk

a. A horizontal unit area ABlocated at height h

is crossed from top to bottom by a flux of radioac-
tive atoms whose density is estimated by the for-
mula Wy ~ =724+ where v.is the velocity close

tothe RMS /(02) = /%L and nj1) = a(h+N)is
the number of atoms per unit volume at height

h + A. The density of the flux of atoms coming

VzMh— X %a(h—A)
from below, Wy = === ~ 5 . The re-

sulting flux density of radioactive atoms on the

Earth W =W, — Wo ~ o\ /2L b, D ~ 12 22,
nD1D

D= (n1D2+TL22D1)

tx fim=2pL.

a. The solution is similar to the solution of Prob-

kTy

lem 5.3.8a : W ~ naAky/=2. No change. b. By a

factor of 6.2.

W ~ 12 Wt, t = 2 h. Due to air convection.
— X1 X2
= +
R mie T s Jmie
t =nt



5.4 Particulate gases. Interaction of 5.5 Equation of state of an ideal gas

molecules with the surface solid
5.5.1 Three times.

541 v~10** s 1. Sm_Q, % ~ 10 N. 559 1 — (P?gj:ii;/l)
5.4.2 Will decrease by a factor of 1to % 5538 Am — m((k—ll))n.
5.4.3 F ~ mrinmuv? 55.4 P =P+ (27:52}2).
5.44 5,55 V =28851

pgL
5.5.6 ¢ = X2,

5.4.5 F ~ 4nr?P where R is the gas constant.

v\ ey
5.5.7 P=1,166 MPa

54.6 F =12 5.5.8 ot = 140°C.
547 F~ PS m 5.5.9 In operation, when the gas in the cylinder is
o =RV Ty heated, its pressure must not exceed atmo-

spheric pressure.

5.4.8 As long as the free path length of gas molecules o7
is greater than the distance between the disks, 5.5.10 T = ="

the momentum of the viscous friction force de- 5511 n— (P=POVo

pends on the pressure. ¢ = (%) P e PV -

5512 n = nCR)

5.4.9 W =w(™)2 In(l+v5)"

5.4.10 When the plates are illuminated, the temper- 5:5.18 1t doesn’t depend.
ature of the blackened surface becomes higher 5.5.14 The burner smokes due to a lack of oxygen. A
than the mirror surface. Therefore, in the rar- vertical glass tube causes the flow of oxygen to
efied gas the pressure on it is somewhat higher. the burner flame.
The rotor will rotate in the direction of the mir-

ror surface. 5.5.15 AP =137 Pa

2VO0+S(l+2x
5.411 F~ 10~ N 5.5.16 T = Togyg (i 21}

5.5.17 P = 1146 hPa.

5412 vl ™ 5518 Yo — 1,9
5413 P~ o FT__

S(T5—T1)] 5.519 o= L{l+H+ 2 - \/(Z+H+%)2 —AlH).
5414 Py =P/ D 5.5.20 = = (Ho — H)(1 — 2 + pgH)

— L 2pgh —hy B
5415 P'=P(1+v2)-27 7' =TV2. PO e =50 arpn) I =5

5.5.22 x = Y335,
— | 3T

5.4.17 The division value of the temperature scale 9-5.24 P =0.17 MPa, P, =0.18 M Pa.
should be reduced by \/14times.

5.5.25 N,Os.
5.4.18 m =~ 0.1 kg. 5.5.26 m = 210 %
! Fre _ 25
5419 r =~ (W?::n&)i, 5.5.27 FZ2 =2,

5.5.28 M =13,5m
5.4.20 In case a, the thermal conductivity does not

change: in case b, it decreases by a factor of N. 5.5.29 r = 15cm.
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PoV (T —T;
5.5.30 m = Mg, 5.6.21 Upas = \/2th[ — LS 4 By LS|,

— 3
5531 V=15m Umaz:\/Qth[l_%(fTi)%""%%Sg

5.56.32 N =0,28

(Por-t40) 5.6.22 Vi = VVoVz, Amin = 5Py Vo[(12)% — 1]. Each com-

5.5.33 T =Ty prerto),

pressor performs the work %
where R is the gas constant.

8,88 5.6.23 Q =450 kJ. AU = 321 kJ
55.34 ¢ = DOr “
5.6.24 Oxygen

5.5.35 T = 27, | ks

5.6.25 T =Ty + < when Q < Q, = “2l;

_ v
5.5.36 V3 = vy . Q+CT0+RT0(1+#)

T c(l+pig)HR(I+ o)

(1+%)WheanQ1

5.6 The first beginning of thermody- 5.6.26 Q = 10pgSh?
namics. Heat capacity
5.6.27 ¢ = (rln) + %)R,n = g;n =1
5.6.1 €H, = €N, = (g)kT, EH,0 = ECH, = 3kT.

5.62 Uy =025 J, Uy = 0.2 MJ. 5.6.28 Cooled

5.6.3 It hasn’t changed. 5.6.29 c= %
_ PiVi+PVe P Vi+ P,V
564 P ="y T =Nhpvnirvn 5.6.30 2 — 3H(lg%g)_
5.6.5 Twice.
PS

~ 3Py Vom ~ 3Py Vom 5.6.31 = M
5.6.6 Vimaz = A/ ml(,gh(if_,sz)UQmaw ~ mz(#’bﬁ‘rﬂiz) x 5
5.6.7 Tyaxw = To + %, where R is the gas constant
56.8 v 10 5.7 Gas leakage

5.6.9 When expanding without heat, the gas performs 571 = ,/2¢PT.
work and cools down. :

6. ‘ - ion. _  [7(k¥1RT
5.6.10 In isobaric expansion 5.7.2 v =/ T,
5.6.11 a) A= PV;b) A= 3LV

:

5.7.3 a.T ~ 3150 K. b. v ~ 3 £,
5.6.12 A =460 .J.

~ km . ~ . ~
5.6.13 Q = (&)(PaVs — PiVi) + Po(Va — V1), where Ris 274 @) v~ 5.2 58 b) v~ 5.7 58 v = T 58
the gas constant.
575 m= AL ~38 L

5614 A=26kJ VA
5.6.15 A = 240 J 2’YRT1 (v=1)

5.7.6 v={2HL[1— () 7 ]}z,
5.6.16 Q ~7.94kJ. A=~227kJ.

5617 A~ R(VT; — VT})>. 5.7.7 T~ 120 K,v ~ 1370 ™

u? PV, 3 578 T~ 193 K. P~ 0.33 MPa
5.6.18 T =To(1 + §55-),V = Volspiiraras) -
2_
5.6.19 A= RI-Ta) 579 v = vk [1 - B+ \/(y + 52 - 2030
5.6.20 At ~ 10°C F = pSv(v/ — v), where p = £k

(RT)"
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5.8 Probability of thermodynamic

5.8.3

5.8.4
5.8.5

5.8.6

5.8.7

5.8.8
5.8.9
5.8.10
5.8.11
5.8.12

5.8.13
5.8.14

state
a.tzi.b.t:gc.tZQLN
a.pr=1.p2=35.bp=%cp=3po=3

a.p=01-LNbV=V1-107).

p~10720" V ~ 10717 — 10718 cm?®,
a. In the figure, the motion along the trajec-
tory is expanded by mirror images into motion
between two parallel lines. The corresponding
points of the trajectories are marked with the
same letters. It follows from this figure:

} k

VR v R VAV A & Ltg(5 + A) — 5

where k and nare integers without a common di-
visor

tg(%—FA)—l:%;hl%%,hQ:O.

b. It is unlikely that tg(% +A) —1is exactly equal
to a simple fraction such as 0.03, because there
can be any number in the vicinity of this number,
e.g., numbers like 0,03 + %, n being an integer,
which are as small as 0.03. These numbers are
called irrational, and mathematics proves that
the set of these numbers is more is more power-
ful than the set of prime fractions. If a number

is irrational, then the trajectory is not closed.

_ S
D=4z

\%4
Cp:(?,

vA/1— Litga = m,tan(a + A) — 1 =

%,hg—().b.p:a—?.c.p:g{s

e L~ atH > R~ R atH < R
and 7' ~7atH ~ R

p=(

A =200 kJ.

)N

Y2)N times.

(1 - V02

1048-10% times.

a. The probability of states that differ only in
potential energy, are the same. Figures a and
¢ show two states of an ideal gas half-full of
the same volume and have the same probabil-
ity. Moving from state a to state ¢ at constant
temperature, using two pistons as shown in the

5.8.15
5.8.16

probability at this transition AS = % + Nklne,
where N is the number of gas molecules, c is
the ratio of gas pressure values above and be-
low the dashed line, separating regions of dif-
ferent potentials. But AS is zero. Therefore,

c = exp( ;—TU ).
Unreal.

Unreal. Real

5.9 The second beginning of thermo-

5.9.1
5.9.2
5.9.3
5.94
5.9.5
5.9.6
5.9.7
5.9.8

5.9.9

5.9.10

5.9.11
5.9.12
5.9.13
5.9.14

5.9.15

dynamics

— kJ
AS =125

AS =75

a,b. AS = () Rin2.

a—c. AS =2 Rin{2 (%)}

a.AS = _% 4 Q2 ER% where —Q; and

Q- are the amount of heat transferred to the
heater and the cooler during one cycle.

b AS = §[3F2 4 3BA 4 2 4 20 0]
2(To—Ty)In( 22
a n—l_(%)%b-n: (2 1)”(131)

5(T2—T1)+2T2ln(%) )
It doesn’t exist.

We can.

n =~ 10,8%,n = 30%.

For any thermal cyclic process
T+ F > 0.Qn—Q = An=4,

Where T, and T, are the temperatures of the
heater and refrigerators, respectively, —Q; and
Q, are the amount of heat transferred to the
heater and refrigerator during one cycle, A is
the work per cycle. From the above relations
it follows, that the efficiency factor n < (T’l i’ ),
wherein the sign of equality takes place in case

%’ % = 0, i.e. when entropy does not change.

During detonation, the entropy of the system in-
creases.

figures. The change in the logarithm of the state 5.9.16 A ~ 33 kJ.
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5.9.17
5.9.18

5.9.19

5.9.20
5.9.21
5.9.22
5.9.23
5.9.24
5.9.25
5.9.26

A~3-10'6 J. t ~ 60 days

Cq ) Co
A = CITI + CQTQ — (Cl + CQ)T1(01+02 T2(01+02> =~
32 kJ

Increase

Quac = 2572

N =0,20 MW ,N'=0,11 W.
m =5 kg.

N =138W

A=46kJ

No. The process lasts until there is saturation
of the environment with water vapor.

5.10 Phase transitions

5.10.1
5.10.2
5.10.3

5.10.4
5.10.5
5.10.6
5.10.7
5.10.8
5.10.9

5.10.10
5.10.11

5.10.12

5.10.13
5.10.14
5.10.15
5.10.16

t~1h.

No

In a vessel without a lid, water evaporates from
the surface, which requires additional heat.

Ap =~ 1078 Pa

13% water

A mixture of 100.5 g water and 30.5 g ice at 0 °C.
m =98 £.

z~0,11 m.

a. Aslong as there is water in the pot, the bottom
temperature is about 100°C. b. You can.

Alayer of steam forms between the surface of the
hot plate and the drop, which makes it difficult
to bring heat to the water.

The low air temperature in the Dewar vial is
maintained by boiling air, and the low temper-
ature of solid carbon dioxide by its strong evap-
oration from the surface.

There is evaporation of ice in the dry air.
v 8T
Carbon tetrachloride boils off 25 times faster.

To prevent condensation of steam.

5.10.17
5.10.18

5.10.19
5.10.20
5.10.21
5.10.22
5.10.23
5.10.24
5.10.25
5.10.26
5.10.27

5.10.28
5.10.29
5.10.30
5.10.31
5.10.32
5.10.33

5.10.34
5.10.35

You can’t.

At the critical temperature, liquid and vapor are
indistinguishable.

Faster.

m=11,7g
P=02MPa, A=35EkJ.
P =0,37F,.

mART
[Po(ng+RT)]"

mART
(hg+RT)"

Av = A=

h ~ 580 m.
5% water.

6% ice.

gh

a.n=erp(HL) = exp(222

pr

). b. Ah=15cm

At = 200000 93¢

It will be halved.

P =Py(£)?

P =2Py(%)?

a. my/n times. b. P = 200F,.
a=1,01%

mp =1,7 %g,mg =170 frackgs.

T~1720 K

5.11 Thermal radiation

5.11.1
5.11.2
5.11.3
5114
5.11.5

5.11.6

5.11.7

48

a. ®~0.2kW. b. ¢ =89 MY

T ~ 600 °C, Ty =~ 2000 °C.
w = 756107171 &
a. Quartz, unlike steel, almost does not ab-

sorb visible light, so when heated, it emits much
weaker radiation in the visible region.

b. Unlike black coal, which almost completely
absorbs visible light, white chalk reflects that
light. Therefore, when heated, chalk emits
much less light and looks darker on the back-
ground of strongly emitting coal.

0. T =T 0.7 =/ E
a.T =Toy/e(££)2.b. o =1.75%



5.11.8

5119
5.11.10
5.11.11

5.11.12

5.11.13

5.11.14

5.11.15
5.11.16
5.11.17

6

6.1 Coulomb’s law.

6.1.1

6.1.2
6.1.3

6.14

a.T = 200,70, —35°C. b. & ~ 4.1026 W. ¢.T = 140
°C
T=24K
T =20°C
P = 751+2i25152 O'S(T14 — T24)
a.T’:%ﬁ.b. n = 32
T=—"P
{/6,5+18
T = {fT — T + [Ty + 55 (T - TH 2
a'a_ZﬂRzmc b. ,U_(i_i)v Pmme
a. The tail of the comet is affected by the pres-

sure of the sun’s rays. b. r =~ 1 um.

ELECTROSTATICS

Electric field
strength

aF=18-10* N. b. F=23-10"8 N. 4.17-10*2
times.

q~1.05-1075 Cl ~ 3.16 - 10* CGS.

a.E=1Y%=33-10"°CGS.b. E=3-10° £ =10
CGS.

At adistance of 1 m F; =9-10'° L = 3.10% CGS;
at a distance of 20 m Ep = 2.25-10% ¥ =7.5-10°
CGS.

For a charge of 0.001 Cl, F; = 9-10" N, F, =
2.25-10° N;

per 1,000 CGS chargeF; = 3-10° dyn, Fy = 7.5 -
108 dyn

6.1.5 F =2.56-10°N
6.1.6 ¢=3.5-10° CI
6,17 Typ = Bllizte) 1y — sllerte)
6.1.8 At a distance z = i \ﬁl‘f/q? from the charge q1.
Yes. No.
6.1.9 ¢ = [\/8megmyg
2
6.1.11 g = 2arctg(%)%,oz =7 - 0.

6.1.12

6.1.13

6.1.14

6.1.15

6.1.16

6.1.17

6.1.18

6.1.19

6.1.20
6.1.21

r=1,4-10"8 cm
_ [V
w=4q (8wegml3)”
. __ 32me ng2
qun - (b
k . \/a2+l2
- 3271’6()(13(\/ 24+12-1)
2
T= 8mepl? (% + g)
Ey=0,FE=—@"
! 27 [(aneo(R21h2) ]
l
E = freswra
— _ (o1—02), — o__.
a) B = (650) b) E (1450)2 ;0) B = ey
d) E = \/01+02+037(§€1;f)2*020’3*0103; ) E =
h(1 S ar) /3l
: ((25000) ’f)E (125::)
b. Yes
a.q=+v10Q. b. ¢ =9Q.

6.2 The flux of electric field strength.

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

6.2.6

6.2.7
6.2.8
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Gauss’ theorem

a.®=EE p &= —En2 &= ER2.

® = Ecosa-m(R? —r?).

F=0%

a.Fl —F2 = (2‘1;0),E: (2‘;0) bF: (ZE%)

a) E = 0atr < RE = g5 atr > R
b) E = (@reor) CS) E = (220); d) E = (?)p;;) at
rSR;E—@#P;Q)atT>R'e)E— (zp;) at
rgR,E:R;E—(%T) atr > R; f) E —’E’—jat
z < 2 (zis the dlstance from the central plane

of the plate); £ = =5 at = > b

=
a) p = 2Ep%0sb) p = Fose

The force acting on the selected face of the cube,
F = o [ E,ds, where [ Ends is the flux through
this face the electric field strength created by
other five faces. As a closed surface, let us con-
struct a cube slightly larger than the given one.
Then all six charged faces give a flux of electric
field strength through all six sides of the con-
structed surface ® = L = 6‘” and through one

face &g = "—12. But
f E,ds+ Z

260



6.2.9

6.2.10

6.2.11

6.2.12

6.2.13

6.2.14

6.3 Electric field potential.

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.3.9
6.3.10

6.3.11

6.3.12

6.3.13

therefore,
f Ends = i —

o> _ ol?

2eq 2e0”

So, the force F' = (‘22512)

hedron we obtain
o212
= V3.

Between planes E; =
planes Ef =0,E} = &

Similarly, for the tetra-

i,EQ = 0. Outside the

By = (£)sin(§). By = (£) cos(§)
Ema:r %

h IS
Ea= (apso)vEB (350) Eey = (é';o)

At any point inside the cavity the field strength
is directed along the line,connecting the centers

of the ball and the cavity, and £ = (350)

Outside the cavity £ = [z + (= orlat0 <z <

l—’f'E—*O[."II W}atl+r<x<RE—
E[RQ Q_W] atz > R.
a. E = (3’:0). b. 0 = 3eoE cosa, where « is the

angle between the field direction and the radius
drawn to a point on the sphere. 0,4, = 3o F.

Conduc-

tors in a constant electric field
a.v =107 = bv=1,25- 106 =

a.Ap=850V.v=+3-10" 2. by =88-10° 2

©=2,7-10° B.

_ V2q
Y= Treol)
Ap~—11,9 B.
p=13,5kV =45 CGS.
p= (4WEOR) No. Yes.

_ __ nQ _ Q _

o) = (01+02) ol = (01;02)702 — _(<71;72)7 0=
(o1+02)

.

a.Ap = 377 GHS = 11.3 kV. b. ¢ = 18.8 GHS
= 5.65 kV.

[(03—01)(ha+ha)+0o3(h1—ho)]
(250) :

Y3 —P1 =

6.3.14
6.3.15

6.3.16
6.3.17

6.3.18

6.3.19
6.3.20
6.3.21
6.3.22

6.3.23

6.3.24

6.3.25

6.3.26

6.3.27

6.3.28

6.3.29

6.3.30

6.3.31

6.3.32
6.3.33

50

Eip=2;Ey3 = 7.
a. The ﬁeld strength near the upper plate
E, W’ near theof the lower plate F,
m Accordingly, the surface density o, =
(a+b)’g = (ffb)'
b . _ a
b-ta =~k B = k)
_ _ _(@+q)
Q/ - 7Q7 (471'R2) E= (4(71'5011112 No. No.
The surface of the cavity has a charge —q,

and the surface of the conductor has a charge
g,which (except for the area near the ends of the
conductor) is uniformly distributed over thesur-
face of the conductor. Therefore, £ = 0 at 0 <
x<r7Emmatr<m<R,E:0at
x > R;x is the distance from the axis.

The surface charge density at the corresponding
parts of the conductor surface will remain the
same.

See Fig.
Y1 = (47@07«)7802 = (SWZUTVSD?’ =0.
qr = —8meor, gar = 16megrp
Ro—R

@1:@%#2:%.
E=0,p=0forr> Ry E= 15 0= 47?50(%_
1 o _ _1 1
RiQ) atRl <r< RQ,E*O,QQ* 47T€U(R717R72 at
T’<R1.
E_}%47T507’2( g;) 90_4:50( Rl)atT‘>RQ§:
_47?R21r27g0 47T60R2(1_7at Ry <T<R27 -
0,p=0atr < Rj.
E=£p=£LR-5Sat0<r<RE=
RS R’i

3pgor2, :?”’Eor atr > R.
Ap = A Ap = £

Y= (650)’ Y= (45 )7 Y= (8eo)"
o= (PinBrT 2 at0 <o < Rip= 20 Ink

atr <z < R.

2

F= (MST}LQ).

F= %

NoF = q(3(22ﬂ\8f0l21)).

= Treoly’

Q-

Will increase by F' = ( at L > R; will not

47‘[‘8 L2)
changeat L < R



6.3.34
6.3.35 h = %, where h is counted from the cen-
ter of the ball.
6.3.36 0 = L.
6.3.37
6.3.38
6.3.39 It will increase threefold.
6.3.40 C =4megR
6.4 Capacitors
6.4.1
6.4.2 a. Increased by a factor of four. b. Decreased by

a factor of two; decreased by a factor of n.

6.4.3 a. C = 22, b. C =5.3 cm = 5.9pF.
6.4.4 a. Inclrease one and a half times. b. Increase
1+ % times. ¢. It will not change.
R1R2
6.4.5 C = 4nep LR
646 C = 47'[’60[%1 — R% — m}il.
_ 2megl
6.4.7 C = ln(%%)
6.4.8 C = =0al(1 4 1)
6.4.9 a.C = (00;7%‘),0—01+02 b. 00:%.& Co =
70 .d. Cy = ‘[ WO1C o 0y =
6.4.10 ¢ = +&oSE.
6.411 AV = d+a(V1 + Va).
6.4.12 a. It will increase one and a half times. b. It will
increase two times.
6.4.13 Ag= 4.
Cd+2e9S \4n
6.4.14 % =( C(;jrsgf’s )4
6.4.15 F =4.4-10~2 N. No.

6.4.16 Will increase by a factor of k. Will increase by a

6.5 Electric pressure.

6.5.1

6.5.2

6.5.3

6.5.4

6.5.5

6.5.6

6.5.7

6.5.8

6.5.9
6.5.10
6.5.11
6.5.12

6.5.13

6.5.14

6.5.15

factor of n%times. 6.5.16
reqrira V2 P 2

6.4.17 a)W = 4.4mJ; b)W = %; W = [ZZO(%)]. 6.5.17
6.5.18

_ Q d _ Q dx _

6.4.18 a. A (28 S) b A = m CAa =

Q%d . _ Q%dx

Gsoa) Ab = ey 6.5.19

51

Electric field

energy
a?S
aF = (32) P = (250 b. o = eFE.P =
2
2B (inST),P = (5:) (inSGS) .c. P = 4.325 Pa,
o =8.85 L.

Will decrease by 1 + % times.

By Gauss theorem, we determine the surface
charge density at the interface: 0 = ¢yFE. Us-
ing the superposition principle,

E — =E, B+ = 92F,

(2e0)
we find the external field strength: £/ = 3Z. The
force that acts on the charge falling on the unit of
the surface area of the interface of the fields, i.e.
the pressure from the external P = E'oc = %
For fields £ and —2F, reasoning similarly, we
obtain ¢ = —3¢oF and E' = =£. Thus, in the
second case the surface charge density is three
times is greater, but the external field strength
is three times less. Therefore the electric pres-

(2[8;0)

sure will be the same: P = F'o = %

_ p2R2
P - 6)250) :
P = m (see solution of Problem 6.5.3).

egR2V?
P = [2T2(1% r)?]"
p = 2mR\/2¢¢ P.
_ _ V2qo V3qo _
a. Fy ey 2 = (85%) Fy (1650)’E1 -
_ 3o
iy Br = Gy B = gy b B = iy
Q*(R?—h? -Q
F=Temy 4= =°
A =2FcdS
a.0c =¢egE, P 2B b A E"E;hs
a2Sh

A= (220)
A= EoShEo(EO — E)
W= g (inSI) ;W = & (inGHS).
r=1,4-10""%m
1,400 times.

_ 3@
W= (20meoR) *

_ @
A= (8neoR) "



6.5.20 A= g R(l N=).
6.5.21 At n times
6.5.22 Ay =34; A, = Ml 4,
6.5.23 A’ =6A.
6.5.24 A’ = /2A.
Q1Ap1+Q2Ap>
6.5.26 A= (©8e1tQedea)
2Q%dc(d—c) .
6.5.27 a)F = o 2d—o
_ sUacV2
OF = g
_ Q%ab
6-5.28 .A — m.
¢>5d
6.5.29 I = g5
6.5.30 The field strength of the charges distributed over

a spherical shell, the hole in which is closed with
a cork, in the center of the sphere is zero and can
be represented as

E(O) = Eoftheplug + Eofthespherewithouttheplug = 0.

At A < r < R the plug field is a dipole field, the
field strength of which at point O is E,fpi.4(0) =

(27;1;%3). After removal of the plug, redistri-

bution of charges on the remaining part of the
spherical shell at Ar, will be negligible, and for
estimation it can be assumed that

’
—q'A
_Ecork -

E(O) = Espherewithoutcork ~ W

. Taking this into

By Gauss theorem ¢ = a R2
account we have

27“2
E(0) = 7@%51?‘5)-

6.6 Electric field in the presence of a

6.6.1
6.6.2
6.6.3
6.6.4

6.6.5

dielectric

p="74-10737 Cl - m.
Pav = 1-10734 CI-m.
Opr = i@. Field strength:
E= (EL - in dielectric,
0€)

E = Z - in the gap.

The potentlal difference between the plates V =
(Z)(d—=h+2).

(cos?a)

E = Egy/sin? + 2

6.6.6 It will increase ¢ times.
6.6.7 ¢ = 2.
6.6.8 ¢=(¢—-1)CV
6.6.9 AV = SQV.AV = =55V
6.6.10 AV = KLV
6.6.11 C = =o(phea)S
6.6.12 C = =9=1=25-. ¢, = ===2¢,
R
6.6.14 p= .
6.6.15 a. To the thread. b. F, = 2&2=Up ¢ [ ~

ea(e1—1)
Vo, F ~ X d. In (£)3 times.

6.6.16 F = %5

6.6.17 M = E(EU%M A— ,%
6.6.18 internal = S22 Geptorna = oI%. See Fig.
6619 P — G2 (4 — ).

6.620 F =24 =L

6.6.21 h= LV

6.6.22 h= =V

6.6.23 W = & =1

6.6.24 W =YC(c —1).

6.6.25 V = [ 2 *|.E~10° L.

6.6.26 The dipole moments in the dielectric are ori-

6.6.27

6.6.28

ented in the electric field with a lag; e = 2.
a. V' ==V, b. AT ~ 1075 K.

r=0.12 nm.

6.6.29 p = 4dmegr’E.

6.6.30 ¢ = 1+ 47wr3n.
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7

MOTION OF CHARGED PAR-
TICLES IN AN ELECTRIC
FIELD

7.1 Motion in a constant electric field

711

7.1.2

7.1.3

714

7.1.5
7.1.6

7.1.7

7.1.8

7.1.9

7.1.10

7.1.11

7.1.12

7.1.13

7.1.14
7.1.15
7.1.16

7.1.17

7.1.18

7.1.19

7.1.20

When the initial velocity of a particle is directed
along a straight line of force.

t=0.56 pus; x = 2.8 m.
— 2(dzvt)m
E="m
w=v\/14 ZL5, tgB = tgan [1+ ooy

Twice as much.

qEl
K= [2 cos? o/(tga+th)]
_ neUbl?
N = (2mevd)”
g =107 CL.
\/ 1+sin® « cosay/I+cosZa—cos? o
ﬁ =a- arctg C—:SQ t /8 cosa iicos2a+sirl2 «
tgp = tgon | riEam
V =19 kV.
)
V=
n( )
The velocity will not change, but the time of the

positron’s flight will be longer. The positron can
not reach point B at all if its initial kinetic en-
ergy Ky is less than eyy.

t' = t/3.
vn

K — 0when! — 2R; K = 4m( + 25— %) at
I > 2R. The condition of mlmmahty will be the
arrival of the electron at the midpoint of the in-
terval connecting the centers of the spheres with
zero velocity.

_ 2R Q =
t=31- (m+M)2(7]reoRva2] 2
v = qu
T =27/ Giy-

2 $.
(mg)?+(qE)?

7.1.21

7.1.22

7.1.23

7.1.24

7.1.25

7.1.26

7.1.27

7.1.28

WwENT T 4122}:7;21 at qﬁi"ﬁé) < mg.

Tr= 27"(% + ngﬁ)% at % > —mg.
o =50~ HGe

k= -

bopr = Gitby ¢ 1=3,4-107%m
k=

7.2 Focusing of charged particles

7.2.1
7.2.2

7.2.3

7.2.4
7.2.5

7.2.6

7.2.7

7.2.8
7.2.9
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Increase by half.
T vy ”(1;5)" at v+ < Lz = 1| +
., 2mee 1
v epoctg(p/%]%)atx>l
a. By a factor of k will increase. b. By a factor of
k will decrease.
— _yof
Y= Gomn)
a. Does not depend. b. If the electron moves

along a trajectory close to the straight line
AA’ then the transverse momentum that the
electron will receive in the region of the hole is
close top L= W’ where ® = 72 F is the flux
of electric field strength across the surface of a
cylinder of radius r in the region of the hole, v
is the speed of the electron in that region. The
focal distance f = ’TZ;TGU = —2&%’32 = —4d. (The
minus sign at f means that electron scattering
occurs. scattering of electrons.)

f=35d(1+3)2% +2/R(HY) - D]atV <

8Vo. At a distance of 242 from the first cover at
V > 8.

£ = d(%ep.

A particle of mass m having charge ¢ and fly-
ing with velocity v through a charged ball will
receive from the ball field a transverse momen-
tum p 1= ﬁ, where © <« R is the mini-
mum distance between the particle and the cen-
ter of the ball, Ag 7x2p2R is the charge of

the area of the sphere cut by a cylinder of radius
x f = mvl _ RV
; pla 2V

~
~



7.2.10 Ata distance f = 2R(+2)? from the center of the
spheres.

7211 z ~ , where f = QR(VV) .

(

L

\\H

_ (a=b)
7212 AE 1= 4

7213 V =V, /2.

4V (2E;,—E1)
(Ez Eq1)?

7214 f =

7.3 Motion in an alternating electric

field
_ 2mel
731 t= e
7.3.9 CL) 26V eAVT < < mi eﬁVl‘r7
/2e(V+AV) /2e(V AV) at AV < V.
7.3.83 Vpaw ~ 10° Hz
Ll mm
734 a. S = (2Vd = 009 v -
7.3.5 The circle radius is 5 cm.
736 v>1 Qni—v
__ mwovT
737V = 25
738 .= = % where n is an integer
7.3.9 Aa = tarctg{ 32,/ mzev [1 — cos(wly/50)]}

4meVon
(mew2d)?

7.3.10 av = (271'71) b. Ab = where n is an inte-

ger.

7.3.11 E

[tmaz| = %kosw\,vm, = 220 cos .

7312 K =04 keV.

7.3.13 Because of the departure from the plasma of the

electrons accelerated by the high-frequency elec-
tric plasma’s potential will increase until even

the fastest electrons even therastest electrons
can no longer escape. V = QQ—E%(%)Q.

Mewd

€E0

7.3.14 Y (e s

A:

47rnee2

7.3.15 T

e=1+

7.4 Interaction of charged particles

~y—1

741 U:\/ﬁ ~

e2(44++/2)

(8megmea)”

74.2 v =

743 2 = f(m

2 = /(Z=)(4v2+1) = 0,01. For the estima-

tion, we can assume that the light positrons will
have time to travel far before the protons move.

2

744 Tmin — ¢

(Amregmev?)”

62
745 rpin = Tareome (v1+v2)2]

46 v =/l

74.7 rmin = (e2+4ﬂ50(f§jvzdcosa)'

748 a=1I.

749 v =/

7410 v = voy |1 — LEV2Y gp mus > C2VEY qpyp

87r€0mv(2]d 167eg

stead of the dihedral angle we place charge +¢
at point A, the electric field in the region out-
side the conductor, and hence the forces do not
change. This allows us to consider the motion of

the system of four charges shown in the figure.

4e2r2

[reome (4r2+R2) 5]

7.4.11

v =
Ze?
(8meqr)

(2-v2)

(4meor) *

+2.

7412 Kpin =

7413 Kpin =

7.4.14
7.4.15
7.4.16

_ (V2-1)m
M

Nmin =
Umin = 2v

Impossible

2 2
TALT Tin = gz + /07 + (5 )

4¢*(1—r)
rl{u?4+v2+2uv cos(a+8)— :—i (usin a—vsin 8)2]"

t = 2v/2tp.

v > % when ¢Q > 0; any when ¢Q < 0.
+ \/ JV[VO - QqM

m+M 2meo Rm(m+M)
v= /Rl atqQ > 00 =0 at gQ < 0.

— . — g’
Ve = (6megml)? Vkr = (24meoml) *

7418 m =

7.4.19

7.4.20

muvg

7421 v = oo

7.4.22

7.4.23
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7.4.24

7.4.25

7.4.26

7.4.27

7.4.28

7.4.29

7.4.30

7.4.31

7.4.32

7.4.33

7.4.34

7.4.35

7.4.36

7.4.37

7.4.38

v = \/ ?>m(2R—1) 8

[2weq RIM (M +2m)] *

2
x =

/lgR( \/471'60Q/,1,ng2 N 1)

COS2 [e% 2 8.1.1
h = o mg [87rso(H7qho)Hsino¢(1_MCtga)_mg(l_
ptga)]
) 8.1.2
_ 3
W= (3272501)' .13
2
k= [Ganmyl(h + 12 + 20o). 8.14
T 8.1.5
_ +
a)W = %WRSpUZ + 47221% +4nR%0(2 — 2%) 8.1.7
_4 Q*+¢° (Q=9)* 8.1.8
DW= 4npe? + L2 — O (2 -
23) 8.1.9
8.1.10

The charge will oscillate along the axis of the
cylindrical hole. Its velocity is maximal at the g1 11
point O

_ So? So? .
v =4/2gh[l — (460mg)] at mg > ey

o 2eomg2h So?
V=) Tozey at mg < Beo)”

8.1.12

_ ___p3 Ry
U= \/1 2mwegmu? In Ry

T =97 47r507r;l3 )
(V24%) 8.1.13
a) Electrons and ions separate completely. The g 114

electric field of the ions E; = (’QLZ(’}) will stop the
electrons after a time

~ 2E0MeV ., ., ~ e’hn
t~ VR

(e2hn) (Begmev) * 8.1.15
b) Part of the ions and electrons form charged
areas at the layer boundaries (see figure) whose
electric field causes the harmonic motion of the
. . e2n
electrons with period 7' = 2w,/ Gomo)- There- 8116
T

fore, the electrons will stop after time ¢t = ; =

™ e?
(5) (Eomg)’V: ﬁ
n = 8sin®(2).
2
x:\/m_l-klo,wherelo:m-
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ELECTRIC CURRENT

R — .
3 (regpmgre. = Vs Vmas = 8.1 Current. Current density. Cur-

rent in vacuum

nec __ . P .
a1~ ™ = 0,024 0. 1 = [ty =
0,0012A.
v=~1

q
I=2yFEav=1,3-107% A.
v=0,4 <",
j = ev.
j = —eneu.
I =sjsina=10 4
t=8-10"%s
p=1

~ I — V.7 ~ [8mervZ1l
B~ (2mequr) 6-10° Ew[/ ~ [ (3¢E) }2 ~ 0.1 m.
a)p = 2% __ where z is the distance to the
> 2cba

0 me
front grid. b) p» = 2p; at x < 29 = %;p =0
at x > z¢. From the dependence of p; on z the
greatest charge field strength between the grids:

2
1 Zo _ pomevy
By = 2e9 JO pgdl‘ T egeE

The charge field of the beam can be neglected
if £, < E. When F; is comparable to F, i.e.

2
PoMeVy

CocE) ™ E, it must be taken into account.
0eE)

2
Hence the estimate p ~ (iif’fg) )
ero

The curve T} corresponds to the iso-temperature
cathode and the curve T3 corresponds to the
high-temperature cathode.

If the field were not close to zero, then all of the
electrons from this boundary would either to-
ward the anode or toward the cathode, depend-
ing on the sign of the field.

_ I med 1 —6_1 Cl

When = — 0 the charge density p — inf, never-
theless the charge per unit area (¢ = fod pdz), is

limited: o = 3.5 - 10~%/d. Therefore the largest
value of the of the spatial charge field strength
is limited: £’ = R In this case £/ < ¥ and
the action of the spatial charge can be neglected.



3
8117 n=3;j = geo\/ 22 Y, I =4S

8.1.18 The charge density increases by a factor of n,
and the current increases by a factor of n? times.

8119 j= 5t

. / Y §
a.ji 47rr2 1- T2 yJ2 = Anr2 r

distance from the middle of the segment AB to
point in which j is determined; r is the distance
from A or B to this point. In the first case the
current is perpendicular to the symmetry plane,
in the second case it lies in it. The total currents

8.1.20

L where [ is the

through the plane are [ and 0, respectively.
b.j = 472W2 1 — 2% where r is the distance from
the source to the pomt at which j
8.1.21 j = %
8.2 Conductivity. Resistance.
Sources of EMF .
821 a.\=SmT b 7=24-10""s
822 SX =1,5-1071C.
—n21)

823 f= ==

8.24 [ = m(;":)“ =1,7mA.

8.2.5 The change in the field occurs at the speed of
light.

8.2.6 The ratio § is almost the same for these met-
als. Theoretical estimate: X = %, where & is
Boltzmann constant, T is temperature, e is car-
rier charge

827 E=4;V1 = (L)\l)cosa,Vg = (%l)

8.2.8 0= EOJ(— - /\%)

8.2.9 tgas = >‘2 2tgon; o = €] €oS al(%)

8.2.10 p = (5/\"3).

8211 a .l = (g;). b. Q = Qoexp[=Ls].

8.2.12

8.2.13 I = 27" R = .

8214 R[ = #()% + %2)7RII = %(T%li\l + T%liz);II =
R%,IU = RLH at |ro —ri| <y, lo.

8.2.15 R = 10,0566 Om

8.2.16 R =

0052
8217 I =4nrAV;R = ﬁ.
8.2.18 R=0,14 Om
8.2.19
8220 R= (£ -L)1=22
8221 C = (f\elg), no.
8.2.22 The electrodes should touch the center of the

plate from different sides.

8.2.23

eneS
_ _Fi _ _FI?
8224 I = W,'U = @R
8.2.25 a. o= LH b= LL
8.2.26 V = - W Ias = ev. f R < 22 2 the current does

not change with the load

8.2.27 I = Iy(1 — \/io)

8.2.28 See Fig. W = E_l

8.229 ¢ =1,13V.

8.2.30 ¢ = 1.07 V. There is an inflow of heat from the
environment.

8.2.31 v=1.4-10"2 mol

8.2.32 The capacitor will not discharge completely due

to the appearance of a chemical counter-EMF,
increasing as the number of baths increases.

8.2.33
_ Vv
8.2.34 k = Bk

8.3 Electrical circuits

8.3.1 » = 1.5 and 50 kOhm.

8.3.2 r =20 Ohm

833 V=1kV

8.3.4 In circuits a and e the instruments will show

a decrease in current, in circuit d an increase
in current, in circuit b and f the current does
not change. In circuit ¢ the upper ammeter will
show increasing current, the lower ammeter will
show a decrease in current.

AV _

AI T
a. 5~ b.

8.3.5 = &

(R+r)

=0 yv~4v

8.3.6 7 =i,
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8.3.7
8.3.8
8.3.9
8.3.10

8.3.11

8.3.12

100 Ohm.

More

V48V, I=15A

rp = SH2saved.

Rp = %;R = 7‘/2‘/}1‘/2),

12V
— MVslo—VaVolL —VoVils)
Is(Vila—Valy)

Ry

Here is the part of the circuit that includes the
required resistance. To the nodes A and O we
connect a battery, and a voltmeter to nodes C
and O, and ammeters to nodes C and A, C and
B, and nodes A and B are connected by a wire.
The current through resistance R is Ic4 + IcB.

Then R = ({757, Where V is the reading of
catlcs)
the voltmeter.
8.3.13 R=70hm
83814 ar = V3R. b.r = (V3—-1R. ¢. I, = I(2 -
v/3)"~1 through a resistance of 2R; I/, = I(2 —

8.3.15
8.3.16

8.3.17
8.3.18

8.3.19
8.3.20
8.3.21
8.3.22

8.3.23
8.3.24
8.3.25

8.3.26
8.3.27
8.3.28
8.3.29
8.3.30

v/3)"~1(v/3—1) through resistance R, n is the cell
number, Ry = (V3 + 1)R

R1 = 97“ RQ 1OT

Insectiona:V =e—I(r+R);b:V = —e—I(r+R);
CZV+El+52—I(T1+7‘2+R);dtvz<€1—82—
I(’I‘l +’I“2+R).

e=34.3V;r =143 Ohm

Battery with EMF E = 10 V and internal resis-
tance r = 14 Ohm

See Fig.
I=10A,r =20 Ohm;e =200V, r =20 Ohm.
I=80A
A~ N
I3(R1R2+R1R3+R2R3)

Ro :
See Fig.
a.V =bir; R = I—6zbSeeFlg I——R:
1$T c. RAB — 137’ RCD — %
I=8A.
CL.IZ%;R LZ.bLR=2Z CRAB—g,RAc—T

(e1r2+eary) T _

€= ﬁ =21V,r= (r11+£2) =3,75 Ohm.
See Fig.

It will decrease by a factor of three.

8.3.31
8.3.32
8.3.33
8.3.34
8.3.35
8.3.36
8.3.37
8.3.38

8.3.39
8.3.40
8.3.41
8.3.42
8.3.43

8.3.44
8.3.45

8.3.46

8.3.47

8.3.48

V=0,1=0,75A.

V=0,7V.

In 12,54 and 27 min.

N =I*R.

N’ = No=Po),

R=9(n—1)r

r =R Rs.

2 and 100 V; 20 and 0.1 W. The current is almost

unchanged. will not change, but the power will
almost double

S = 42 mm?; approximately 10 times.
N=(E-Ir)[;R=r.

Ny =125 W; Ny =80 W; N3 =45 W.
Atr=R

Np = @;Nt = M

Ife > %, then the useful power is greater than
the thermal power.

N=4W
N = I(m2 _ [R).
g = 4n%epa’en.Ru, U»M

T=Ty+ %, X > I2R00£. When X < IQROOL
the temperature T increases indefinitely.

8.4 Capacitors and nonlinear ele-

8.4.1
8.4.2

8.4.3

8.4.4

8.4.5

8.4.6

8.4.7
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ments in electrical circuits

a.q=8-10"4Cl.b. V = 60 s. 30,30,60 V

V= 2a: oy SWap sources
pa=pp+2(-3)y .
YA — YB = E(RfER2 — (Clcjfc?' It should be

measured with an electrostatic voltmeter, ¢;

clR1€ CQRQE . .
Tt 2 = k) In this case, the influence

of of these voltmeters on the electrical circuit.

CV2 Ry
"4 Ri+R»

_ Ry

_ cv?
Wi == Ri+Rz’

i Wa =

W=A-1%.

q=CegW ==



8.4.8

8.4.9
8.4.10

8.4.11

8.4.12
8.4.13 ¢

8.4.14

8.4.15

8.4.16
8.4.17
8.4.18

8.4.19

8.4.20
8.4.21

9

C(E*V{))Q
2

W = ,e> Vo, W =0,e < V).

C(V—e¢)?
——.

W=CV —¢e)e; W =

First the capacitor must be charged from one
cell, then from two cells connected in series, and
so on. Then the energy loss will be % fraction of
the stored energy

Ny =% >N, = (2173)' These quantities dif-

fer from each other because of the work done by
changing the capacitance of the capacitor.

In 7~ 10"3RC.

€1R2+62R1 e1Rot+kes Ry
=C Ri1+R3 =C kR1+R2
_ VQRT
V= (rT+RT)"
v _

at — Rcvv Vbeip( )
I:%exp(m)

R <40 kOhm

v = (RCIn “f:“;‘l’

)~
a I = %’. b. No

_ eo(e—1)eav
I_ande .

251
I:2a1R2+%_[(2a1R2+%) 16*32]2

On the volt-ampere characteristic draw the line
I = (E;{V); the point of their intersection gives
gives a current of 2 mA. Drawing the corre-
sponding straight lines through the ends of the
rectilinear of the characteristic line, we find that
at R > 0.3 kOhm and R > 3 kOhm the diode
stops working at the straight line part of the
volt-ampere characteristic.

PERMANENT MAGNETIC
FIELD

9.1 Induction of a magnetic field. The

911
9.1.2

9.1.3

914

effect of a magnetic field on a cur-
rent

B =1001T1

B=20TI

a) Fi = FITI\/IJr L —2Lcosp. b)F, = 2F Bl

alV B

Ah = (bpg) -

9.15
9.1.6
9.1.7

9.1.8

9.1.9

9.1.10

9.1.11

9.1.12

9.1.13

9.1.14
9.1.15

a = 45°
I = 3% ctga
w= \/@.
_ IB
tga = (4pg)
The current frame will be divided into trape-

zoidal microcircuits with current I as is shown
in the figure. The moment of forces acting on all
microcircuits when Ah — 0 coincides with the
momentum of forces acting on the frame with
current:

Ao~ SilAM; x B] = [(SiAM; x B)] py,0 —
[M x B
_ __m(4+mIB

a.tga = 2. b.tga = iy SEa

_ wR?IB(sina+cos a)
N=—"—"F"".

_ P
B = Gamy
4 — 2xRIBsina

_F
B=tmn

9.2 The magnetic field of a moving

9.21

9.2.2

9.2.3
9.24
9.2.5

9.2.6

9.2.7

9.2.8

9.2.9

9.2.10

9.2.11

9.2.12
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charge. The induction of the mag-
netic magnetic field of a linear
current

B= (*g;ff) where r is the distance to the thread
= éﬁ?i L where r is the distance to the wire.
w=125.
B=1,88-10"° Tl
B =5 +3)
= g;f sin § where [ is the distance to the in-
tersection point of the wires.
a. B = 2% sina. b. B = “Olé sina.
B = iy B = [zéifij)%r
n = sin(§)
B=oh(1+7)
B= (’;(g).




9.2.13

9.2.14

9.2.15
9.2.16

9.2.17 B
9.2.18

9.2.19

9.2.20

9.2.21
9.2.22

9.2.23

By = %I[H(R%Jr}ﬂ) + (R2ﬁ2)3 + ﬂ(Rfiz)%]%-
a. I = Iopy/10. b. T = 215+/10.
B = (gfr%)
= “OMW M = Ia?
Two flat circuits with current I, having differ-

ent shapes but the same area, break them into
square microcircuits with current as shown in
the figure. The induction of the magnetic field
created by these microcircuits when Ah — 0 co-
incides with the induction of the contours inside
which the microcircuits are located. The mag-
netic field of the circuits in question is close to
the field of a single micro-loop at a large distance
multiplied by the number of microcontours in-
side each loop. But this product when Ah — 0
for each loop tends to the same value since the
number of microcontours depends only on the
area of the contour.

a. In the figure each microcircuit with momen-
tum M, is surrounded by a circuit with current
I = % . At distances much greater than the
distance between neighboring microcircuits, the
field of microcircuits tends to the field of sur-
rounding current 7, which coincides with the
field of the current I, flowing along a large cir-
cuit. The magnetic moment of such a loop M =

Ib2 = A{[Jb = ’I’LMQ

b. The magnetlc field of a thin plate is close to
the magnetic field of the contour current I =
hM, where M is the magnetic moment of a unit
volume of the plate. But the magnetic field in-
duction B is related to I by the relation B =

MOI\/ Bra
o) Therefore, M = Gah/S "
B— 1o MR?h
[2(R?3+12) 2]
B=4,9-10"2 Tl

The vector By must be parallel to the surface of

the disk. N = 22BLuft,
= [ rmHE _
M = (2poah?) "

9.3 The magnetic field of a current

9.3.1

distributed over a surface or
space

MOUU

B =

9.3.2
9.3.3

9.3.4

9.3.5

9.3.6

9.3.7

9.3.8

9.3.9

9.3.10

9.3.11

9.3.12
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B=10"1'0T11.
poi
o
Between planes B = M, outside planes
B — EHo(iitis)
5 .
12
F=ul
a. A= el b By ~ 10 Tl By ~ 35 Tl
B| = poeoE v = o 2 where £, = —22 is the

(4m) > (4meg)
component of of electric field of current carriers,

perpendicular to the surface, o - their surface
density, v - velocity

— _oaj

a.B = . b. B = ppi;independent. c. B = Ay

_ ponRI®
T= 2

a. B = ’(‘21 where (2 is the solid angle at which

the surface of the cylinder (see problem 9.3.7).
In the section AA’ the solid angle Q = 2w, so
By = 5.

1 : 1 _ 1 - R
b. B = QNJOL(]- - 1+( R )2)aB g, —inf Z,U'OZ(zl )2
V @1

B = poi(1+ JH?T)?'),B = 40 Sint HOT
z2
a. The magnetic field of a cylinder is composed

of the magnetic fields of thin discs of thickness
A into which this cylinder can be divided. The
magnetic field of each disk coincides with the
magnetic field of the current flowing with linear
density M (M is the magnetic moment unit vol-
ume of iron); on the outer surface of the disk (see
the solution of problem 9.2.19).

b. The direction of magnetic field induction in
the center of the cube coincides with the direc-
tion of of magnetization. The modulus of this
vector will be as many times smaller than the
modulus of induction of the magnetic field in-
side the rod as many times 8” (the solid angle
at which the side faces of faces of cube 1 — 4) is
less than 47, i.e. n = 1.5 times.

_ oM .
c. B = Sqrt1+4(%)2,B — poM, B
poMi

2r
d. B

QMQMT2
2

(27550 (£) it 7

%

- (5)=0

— 1 .
MOM(l W)y
— qu

B (5)=inf
The induction of the magnetic field inside a rect-
angular column will be as many times greater
than B, how many times greater 47 is the solid
angle at which the side faces of the plate can be

. __ maByg
seen from its center. B = avan)




9.3.13

9.3.14

9.3.15

9.3.16

9.3.17

9.3.18

9.3.19
9.3.20

9.3.21
9.3.22
9.3.23

9.3.24

By =6,28-10"*Tl, B, = 0,377 Tl

Boxh
AB = (%)

Iz I
a.B = (‘Q‘;T) O<x<rB= (1217?:0) x>
b. B = porj,x=4;B = “02‘”,:10 <3
NI WNIT

BmaT = /{QC)WT) ; Bmm, = éQOﬂ.R) .
a. Above the plane B = (2“70915)’ the magnetic field

induction lines coincide with with the field in-
duction lines of an infinite straight wire; below
the plane B = 0.

b. Above plane B =

po(I—1Io)
(27x)

c. Inside the cable B =
B =0.

(57‘;; 3> below plane B =

pol
(2nrx)?

outside the cable

B= Mtggv

2mr

See Fig. Bz = %

B=%jr0<2<B="%9nl-L)z>1
wherexls the distance to point O.
jd
B = B2,
a. B =% b i = 2Bysin-£ i, = 220, See Fig.

The component induction of the magnetic field
along the solenoid axis B = ponl, and compo-
nent of the magnetic field induction perpendic-
ular to the solenoid axis, B, = ugnltga.

To determine the equivalent surface currents
(see the solution of the problem 9.3.11a) the
cylinder should be divided into thin layers, one
of which is shown in the figure. The planes of
the layers should be perpendicular to the direc-
tion of magnetization. B = ""M whenz <r;B =

(LeMy()2 at o > 7.

9.4 Magnetic flux

94.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7

a. = \/gBT‘ZQ b. ® = BSsina.
® = B - wR%(sina — sin® )
n = Sna ;i — ( B) cos a1 — tgactgP).

sinf3? Ho

9.4.8

9.4.9

9.4.10

9.4.11

9.4.12
9.4.13

9.4.14

B2+ B2+2B1 B3 cos a
— — a 1 3 123
B2 - B4 - Bl as \/ 2cos(g)

a. By = 3Byt tga = %g See Fig. 0. B, =
%nBO%(;})" 1 B = *T‘Bo
Since the magnetic flux of the radial compo-

nent of the field induction outside the cylinder
is conserved, the magnetic field induction will
decrease as 2 where r is the distance to the

axis 340 of the cylinder, o = (BUR) is the radial

component of the magnetic field induction near
of the cylinder surface.

a. At a sufficiently large distance from the end
of the cylinder the magnetic field induction By =
Loi, and the magnetic flux in section 7 R? is equal
to mR?B,. Part of this flux (®;) comes out of the
cylinder through section AA’, part (®5) - through
the side surface: 7R?’B;, = ®; + ®,. Hence
&y = TR2B)— ®,. Asin section AA'B| = % (see
solution of problem 9.3.10a), then ®; = 7R*B)| =
wR;BO and &, = wR;BO _ ;L07r21',R2.

b. The force acting on a dedicated section of
one half of the solenoid in the axial direction,
AFk = B, AS — nl = = A®, where A®
is the magnetic flux from the other half of the
solenoid through this section. Therefore, the to-
tal axial force Fjj = nI — ®, where the total mag-
netic flux from the second half of the solenoizd
through the surface of the first half ® = %.

So F” = 7’”071’(7;”%)2 .

B = \/2uoF (7 R?).
F = ’fl](q)l - (I)Q)

a. L = %;Rﬁ b. L = ponmr?

10 MOTION OF CHARGED

PARTICLES IN COMPLEX
FIELDS

10.1 Motion in a homogeneous mag-

10.1.1
10.1.2
10.1.3

10.1.4

60

netic field
R=0,2m
R=0,68m

a. w= %.b.wzl,?&lo11 st

B K1
Ro Ko



10.1.5

10.1.6

10.1.7
10.1.8

10.1.9

10.1.10

10.1.11

10.1.12

10.1.13
10.1.14

10.1.15

10.1.16

10.1.17

10.1.18

10.1.19

10.1.20

10.1.21
10.1.22
10.1.23
10.1.24
10.1.25
10.1.26

10.1.27

10.1.28

— 2mm
t=1{n

__ 3(eBR)?
K = (4mp)
sina = (ani) at fn—B < %;a =mat an > %
1 = 0.29 m, 29 = 0.41 m, z3 = 0.5 m, x4 = 0.58
m, Al = 3.7 mm.
% <0,025

_ 2mw o mv(éa)2
=G5y 8% = “agm)

_ musina __ 2mmuvcosa
R==0m"h="0n

__ 2mmev _ Wmc“(‘sa)a
T = T(eB) Ay = (4cB)
See fig. a. B> By = 2L, 0. P, > P
B P—

% + (167r52vR2) :

_ _ _eB
w = Wwo 7(27”6).
1 _ 2Vh _ 2eV
V! =2k pp, 2V
_ me.E _2
a-Y = eBuL~ -

b.ylm]=1,1-10"*m=1. 22

_ m.E 2 eBIL\2
€Y= eBaLc\/~ +(mec) :
_ mmyp (e?B?R? _
t= eQBV( 2my, K)
2 2 .
V = 84 . L where k = 1,2,.... The size of

22m. k2

the spot is determined by the initial velocity of
electrons.

v = %(sina —pcosa) at u < tga;v =0at p >
tga
M = 27 R?pvBR.
_ Q(B2—Bi1)R
vE T em
M = w. Preserved
The time of motion of the electron through the

highlighted area ¢t = %, where v is the projec-
tion of velocity on the plane passing through it
and the axis. The change of momentum in the
direction perpendicular to this plane is Ap, =
—eBuivAl — _oB Al = — 222 where A® is the

v ~ (27R)’
magnetic flux through the plot. Change of mo-
mentum AM = RAp,

—(5=)A®. Therefore,
My — My = (5%)(®1 — $2).

_pB;
a-5h)

n = 2

_ By
r=R -

10.2 Drift motion of particles

_ 2v(B1—B2)
10.2.1 Vdr = m
am.v?
10.2.2 Vdr ~ W
: _ mEl
10.2.3 See Fig.R = 1,/ %
- 2V/qlE
T 2v/qlB+nvmE
10.2.4 v=£.
10.2.5 vg, = %
10.2.6 vg = (£)sina
10.2.7
eBh 1%
10.2.8 v < (dm.) orv = TB)
1029 V=L v =35.10°V
10.2.10 In a coordinate system moving with drift veloc-

ity %, the electron moves on a circle of radiusIn
a coordinate system moving with drift velocity

E/B, the electron moves on a circle of radius ™% :
, where o/ = (v + 2E cos o + £33
_ _F
10.211 Vdr = m
10212 v, ~8-1077 2 v, ~1.5-107% 2
11 ELECTROMAGNETIC IN-

DUCTION

11.1 Motion of conductors in a con-
stant magnetic field. Electric mo-

tors
11.1.1 Between the ends of the wings
11.1.2 V =0.03 V.
11.1.3 V = vbB;0 = ¢gvB

Z

11.14 v < m.

1115 V<7 MV.

11.1.6 £ =vB.

1117 B = 15

11.1.8 a. See Fig. b. M = (8% gin? ot
_ B?vab . _ B%wb?

1119 W = 5552, a <b;W = 50,0 > b.
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11.1.10

11.1.11
11.1.12
11.1.13

11.1.14

11.1.15
11.1.16
11.1.17
11.1.18
11.1.19
11.1.20

11.1.21
11.1.22

11.1.23
11.1.24

11.1.25

11.1.26
11.1.27

11.1.28
11.1.29

11.1.30
11.1.31

11.1.32

_ B%Pvtga
W="%;
_ (B)’SL _
N=" =
I =\BvS=10kA, V =vBh =200V
V=G
av=/2B1L b v ~1,1-107 2
v =+ IB(pb)
2712 Bv
It = Ry GroTon)]
_ SB
Q=%
B=11-10"2TI
v = gg;;i In heat.
v(t) = g5 (1 — exp(—EF )] 0(t) = Gy
k=1
mgR

v= (Boma?a)?”

I = (5%1)coswt.

11.2.4
11.2.5

11.2.6

11.2.7

11.2.8
11.2.9

11.2.10

11.2.11

11.2.12

11.2.13

11.2.14

@-inst = Bz“ (1-2E8) 7= 28 b w(t) = 21— 11.2.15

cap(~ami 1) 11.2.16
wBr?

I= 0 =04 A

w=wy— 7(33{%@).

When the rotor stops, the circuit will have max-
imum current flow because there will be no in-
duction EMF

e=40V
f=fol5 = =",
e=120V. N =240 W
M = 25I0w

wg

[ — 2V(I1—I2)+R(4I;—13) v —

2p(12—17) , 3512V — I(2pl + R)].

11.2 Vortex electric field

11.2.1
11.2.2

11.2.3 In position C, because of the axial symmetry of

® =1Vb, 100 Vb, 300 Vb

V
E_(21>_25 1077

11.2.17

11.2.18

11.2.19

11.2.20

11.2.21

11.3 Mutual inductance.

E;=64-10"% X B, =256-10"° X

E = ppax, where z is the distance from the cen-
ter line

E = (%0"010):5 cos(2mvt), where z is the dis-
tance from the coil axis; £ = 0.12 V.

a.q=Cp. b. g1 =q = Cclfé ®.
a.q1=C1%5,q20=C2%5.b. g3 = 7(5;1002;%3 2

a. I = 144 mA. b. I =
through the jumper is zero.

2.5 mA, the current
C. Il = 2.79 mA,

b. AI = IET

(RCY
®pae = VRC =5-1077 Vb.
a. Vi =t/ 2emel v, — 13, [ Bl
b Vi=(8,7-108 ¥ )t V5 = (1,2-10™ ¥)e3
€= (”T’"z)nBow sin wt.
w = (2‘17”77“2) There will be no change in

B(t) = at(1 + %
Decreasing. As the magnetic field induction in-
creases, the Lorentz force and the electron ve-
locity increase. But the latter is not fast enough
for the electron to stay on a circle of the same
radius

| = 3. By a factor of 100. If the initial radius

r < l the electron will move along the conver-
gent to the center spiral, at » > [ - along the
divergent spiral.

_ 20B
Y= Flot2mea]
a. 2.6 - 10'2 times. b. nSr ~ 7-10~1* m?2 where

n is the number of turns per unit length of the
solenoid, r is the radius of the solenoid, S is the
wire cross-section.

Me.m. = opoCV?2 = CC—ZQ where c is the speed of
light
Mem. ~ 10727 kg

Conductor
inductance. Transformers

the magnetic field, the induction flux through 1131 & = 4,ISnsina, Lis = poSnsin a.

the ring does not change. Therefore, there is no
EMF in the ring

11.3.2

62

Ly = (@)(cosa +sina).



11.3.3

11.3.4

11.3.5

11.3.6

11.3.7

11.3.8

11.3.9

11.3.10

11.3.11

11.3.12

11.3.13

11.3.14

11.3.15

11.3.16

11.3.17

11.3.18

11.3.19

11.3.20

11.3.21

11.3.22

11.3.23

11.3.24

11.3.25

Lis = pomr?nN 11.4 AC electrical circuits

V = pomr’nNwly cos wt 1141

L = pomr?n?l. b. Equation of motion of the elec-
tron in the solenoid

(5 ~ b4 = m, 4,0 = 2. 1143

11.4.2

But en.Sv = I. Therefore, the first equation can 11.4.4
be rewritten as

El=V (L+

11.4.5
11.4.6

)dI
e2n, S dt*

So L1 =
11.4.7

I — pom(ritriratri)n® _ 9.3 Gn

3 " 11.4.8

_ _Bvv_ _ L10-2
t= b =89-1072s. 1149

— MpogoT1
L="57n 11.4.11
L =Htiph

11.4.12
Increased by a factor of &
L1 = pom(n2rily + n3rily + 2ninorily); Ly =
uow(nlrlll +n3r3ly — 2ninarily). 11.4.13

11.4.14
L =1L+ Ly+2L

11.4.15
Lio =/ L1Ls.

? . 11.4.16
E2 = (MilNQS)IQw COS wt.V1 = 11.4.17
(Wolﬂ).’ow cos wt.

Vo = const
11.4.18
11.4.19
11.4.20

v =100 Hz

To reduce Foucault currents

V=10V

V=60V

63

I(t)=% A=
field

a)V=a(Rt+ L).b) V = Ij(Rsinwt + Lw cos wt)

(2 L > Inthe energy of the magnetic

W, _ (@n?

(RT)
I(t) = (5%)(1 — coswt).
See Fig.
C(t) = Coll — ters]

Vinas = VoRy[ €

a. When open. b. ~1uF

C= [(27ru}V)2L]

Imax =€ %7 dmaz = 2eC.

— CLs _ CL
Iimaz = Vm7 Iymaz = V\/m
al= %\/>51nw0t where wy = \/%70
(wosinwet — wsinwt); Ipge =

_ \%
b1 = gt
Vo ~4,8kA

Lijw—wo]|

a.See Fig VR = RIy,VL =wLIly,VC =

)
b. Vo = Io\/R2 + [wL — WP’ = arctgiL (C)

€g =208 V.

I(t) = %coswt

L=28Gn

V = Vpsin(wt — ), where ¢ = arctg%.

a. Ip, =0,Ip = (5%)sinwt, N =200 W

b. Ir = (%)sinwt,Ic = —eowC(sinwt +
coswt), N =200 W

L=0.16 Gn

See Fig.

If Vi, and Vi are the potential differences re-
spectively on the capacitor Cy and C, and I is
the current in the circuit, then Vg, — Vo = Z4 =
Vocoswt,w = 4/ &5ty But (Vo—Ve,)Co = VCC.
From these equations we find

Ve=(01+ g)_lVo(l — coswt)

Therefore, at V < 2V(1 + CO) ! the breakdown
occurs after time

_1 cH\V
T = garccos[l — (1 + &) 7]
andatV > 2V5(1+ C%)‘l the capacitor of capac-

ity C does not break through



11.4.21

11.4.22

11.4.23

11.4.24

11.4.25

b. If I and I, are currents through the induc- 11.5.13 The magnetic field above the superconducting

tance coils L; and Ly, and w = —L—
(L1+L2)C

I() = (wVTol)’ then Lljl + LQIQ = LI(),Il — IQ =
Iy coswt. From these equations we find

IQ — L1+L (1 —+ COSL&)t)I(),Imaz - 2VO\/%

a. L1I1 + LQIQ = Llf = (L1 + LQ)I(), where IO
is the steady-state current through the coils of
inductors L, and L.

1 9 1 2 _ L. L 2
W= 3L I? = (L + Lo)I§ = g I

2([1 12) I tOI + (Il 12)

b I to I, — .
LR T T (1+22)

R=1,4-10"3 Ohm

W= (L+CR22)<1%—1§>'

11.5 Conservation of magnetic flux.

11.5.1
11.5.2
11.5.3
11.5.4
11.5.5
11.5.6

11.5.7

11.5.8

11.5.9

11.5.10

11.5.11

11.5.12

Superconductors in a magnetic
field

B = By(™)?

It will be halved.

One and a half times
Reduced by a factor of three

Only the axial component of the magnetic field
induction changes. In the region of the external
field it is equal to (4)Bycosa, and outside this
field it is equal to —(4)By cos cv.

I=1y— (Lf)Bo COS Q.

_ nD?’B
Iy = ar) -

Outside the steel cylinder the induction will de-
crease by %, inside it will increase by %

See Fig. z - coordinate of the front end of the
rod, counted from the beginning of the coil.

I I
a. Lmas = T - b. Inas = T .
B (Sh)
2 2| N2
L= Ho7TT (1 — %)T

I = a,/z'f’:i’;gh = 380 A, pc, is the density of
copper.

plane AA’ coincides with the magnetic field,
which is the result of superposing the magnetic
fields of a straight wire with current I and a wire
with current (—I), symmetrically located under
the AA’ plane. There is no magnetlc field above
the AA’ plane. Therefore, P = T The in-
teraction with the superconducting plane of a
long wire with current I is equivalent to the in-
teraction of two wires that are 2h apart, with
currents flowing in opposite directions. There-

fore f = —(’i‘;f;).

%4 _2k’m

v= (rr2nB) s

From the laws of conservation of energy and
magnetic flux in the solenoid follows

B3 (W—w)+imug = io B2W +$muv?, Bo(W —

2#0
w) = BW
where B, = YY1 and B are the maximum mag-

netic field induction in the solenoid before and
after the projectile, W = 7R?L and w = 7r?] are
the volumes of solenoid and projectile. From the
given equations we obtain

Av = \/’U(Z) + mpo () 2r21[1 — 7(1;’;2)] — g

v=NIr (17;‘;1?1).

When entering a magnetic field in a supercon-
ducting rod, a current arises that creates a field
inside the rod, the induction of which is equal in
modulo to the induction of the external field and
is directed in the opposite direction to it. The

work to create this current A = (B;j g is equal to
the change in kinetic energy of the rod. Hence,
Vpnin = B Sl

man (om)*

The magnetic flux in any cross section of the tube
during the projectile’s flight does not change:

mriB = w(r? —r3)B1,mr3B = 7(r3 — r¢)Bs.

Using these equations and the law of conserva-
tion of energy gives

AK = () [ — o)
200/ 07=r2) T 3-13)
. 2 82
V1 = U,V = 3’1} 1fm112 < [ALLL(J(QBSi—AZ)(SQ)] 1=

=i 2y __ B%Ss®
3v,ve = v if mv* > [4%(23_3)(5_3)].
B?1Ss?
2p10(25—s)(S—s)
2myvi+(ma—m1)vy
mi1+ma ’

v} = vy, v = vy if 2 +U11) >
2m2v2+(m17m2)vl /

I _
v = m1+m2 7”2 -

(v2 v1) B2Ss?
if 74_7 < 2p0(25—5)(S—s)

mo



11.5.22
11.5.23

11.5.24

11.5.25

11.5.26

11.5.27

11.5.28

T/ — T

VB
w = 2./ #oah

V Im(=d)]
LxI?
v = Uo(]. + 1+ m)
vZA

B =By + 2*;;@,0) ~ 500 T1, P = B2(2u0) ~ 101
Pa
Equation of motion of the electron in the tube
me% =eF = egid(BL;B/),

where B and B’ are the inductions of the exter-
nal magnetic field and the field created by the
moving electrons. Therefore, m.v = ‘”"(Bf_g).
On the other hand, en.vh = j, B’ = ugj, where
j is the linear current density. From the last

: s e’hB
equations we get j = Tt ron) and then
/ meB _ 3 —5
2
_ 2mew
B = e

11.6 Relation of the alternating elec-

11.6.1

11.6.2

11.6.3

11.6.4

11.6.5
11.6.6
11.6.7

11.6.8

tric field to the magnetic field
Cp = 1%(in GHS); Cp = poco %’ (in SI). Cp
is the circulating magnetic field induction, N is
the electric displacement flux, c is the speed of
light, ¢y and po are the electric and magnetic
constants.

a. % = vlE,Cp = poeovlE,Cp = “050% (in
SI), Cp = %% (in GHS)

N=9.-10°V -m

According to Gauss’s law the electric displace-
ment flux inside the capacitor N = %, where
Q is the charge of the capacitor and the rate of

change of flux 4¥ = %Cz—? = L1, where I is the
current in the circuit. Therefore, the circulation
of magnetic field induction Cp = poeoZY = pol
coincides with the circulation of magnetic field
induction that would be created by the current

I.

B=25-10"6T1
2nNr
n==7r—

B = pgegEvcos a

B
(Itov)

g =

11.6.9

11.6.10

11.6.11

11.6.12

12

a. B = @ inside conductor, B = M
between conductor and capacitor’s coils.

b. Will decrease by a factor of Ezﬂ; .

See Fig. In the first case, because of the po-
larization current flowing through the circuit
abb'a’, the circulation of the magnetic field in-
duction vector through this contour will be ¢
times greater than in the second case. There-
fore, the motion of the medium together with the
contour reduces the induction of the magnetic
field by a factor ¢

a. The induction of the magnetic field caused by

an alternating electric field, B, ”(2;;7’1“)“’
£02027 The induction of the magnetic field
caused by the polarization current of the dielec-
tric is € — 1 times greater:B; = (¢ — 1) B;. There-
fore B = By + By = eBy = H55=2T,

b. By = Le=SsaVr By — MeedV[:2(c — 1) + 1.
See Fig. By = (g;;ﬁ;). When =z < r the value
0
of B = g;’rfj, at 1o > r > r the value B =
0

polr® (rf —a?)
2rx2ro(ro—r2)?

for z > ry the value of B = 0.

ELECTROMAGNETIC
WAVES

12.1 Properties, radiation and reflec-

1211

12.1.2

12.1.3

12.1.4

12.1.5

12.1.6

12.1.7

12.1.8

12.1.9

12.1.10

65

tion of electromagnetic waves

In the direction of the z-axis
a), b) Will be reversed

E = E() SiIl[QTTr

(z = ct)]

Ey = \/E? + EZ + 2E,E5 cos(p1 — ¢2)

FE; sin 1+ F> sin o

— _Zz
Y= w(t c) + arctg E; cospi+FE2cos s’

E =2Ey,w = 5 E3cos?®[(t — £)A + ¢]
B = £(inSI), B = E(inGHYS)

B = E¥%(inSI), B = E\/E(inGHS).

B = E¥E(inSI), B = E\/Eu(inGHS).

See fig. %, %; 1.0; %, %



12.1.11 a. Two plane waves running in opposite direc-
tions. Wave length d, electric field strength in
the wave % b. Two plane waves propagating per-
pendicularly to the planes AB and A’ B’ in oppo-
site directions. Induction of the electric field in
the wave %

12.1.12 a. Erea = 32E

b. When the sphere stops, all the energy of the
magnetic field will be transferred to the radi-
ation energy. At any point, the magnetic field
induction of a moving charge is equal in GHS
to the electric field strength of the electric field
multiplied by (%)sin6#. Therefore, the energy
transferred to radiation, would be equal to the

electric field energy %
there were no multiplier sinf. Because of this
multiplier, the energy of the magnetic field de-
creases by another factor and a half. Thus,

W =2 (22(inGHS),W = 12— (2)2(inSI).

c. The intensity of the "extra” fields will increase
by a factor of two. Radiated energy is propor-
tional to the square of the intensity. Therefore,
the power of radiation will increase by a factor
of four.

12.1.13 Interference of radiation from different plates.

V'k = Sk,v"k =~ §(k + %),
k is an integer

12.1.14

12.1.15 a. See Fig. At time t at point A, the electric field

strength radiation F,,q = E; + E5, where F; and
E5 are the field strengths in the wave emitted by
the upper and bottom plates:

Ey LEa(t — %),E,
—iE’Ut_ (a+a) = —iEa(t — xTﬂl)

_ 1 — —
2cEUt_% - -

S0, Erga = E1 + B = (425

b. .Emd = e = (2220)(in51)§Erad =
2o (inGHS).

c. In the electric field of the wave
Epsinwt(w = 27m)) the speed of the electrons
v = £ coswt. The amplitude of the electric
field strength in the wave emitted by these
electrons, E,,q = f{fﬁ) % Reflection coefficient

Eraa _ nee’x
k= ( Eod)2 - [(477771@”500)]2'

You can also find the reflection coefficient by de-
termining by how much the wave is attenuated
after passing through the film. In this case sec-
ondary emission of electrons caused by their in-
teraction with the wave already emitted by the

12.1.16

12.1.18

12.1.19
12.1.20
12.1.21

12.1.22
12.1.23
12.1.24
12.1.25
12.1.26
12.1.27

12.1.28
12.1.29

12.1.30
12.1.31
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same electrons during interaction with the in-
cident wave. Due to superposition of secondary
radiation coming in the antiphase on the wave
passing through the film the intensity of the
wave decreases, and due to superposition of pri-
mary radiation coming in the shifted phase on
it the intensity of the wave decreases. radia-
tion coming with a phase shift of 7, the inten-
sity of the wave increases. The first effect is two
times stronger than the second one. Therefore,
the intensity of the wave after passing through
the film will decrease by an amount equal to the
intensity of the reflected wave

A=4-10"°cm

multiplied by (%)? if 12.1.17 As the film thickness increases, more and more

electrons become involved in the radiation re-
flection. more electrons and the amplitude of the
reflected wave increases linearly (region z < x1).
The linear dependence of the amplitude on the
film thickness is broken when the fraction of re-
flected radiation is large. This is the case when
xr > Ta.

A= 74”(’;’;:6”25)0“ ~ 107° cm.

E=0,B=2E

A=4-10%em,z=2-10"° cm.

j = 2e9cE,P = 2e0E?*(inSI);j = (‘fr‘)),P =
Z)(inGHS)

P =cyE?

P =2mPa, P=0.5mPa

r~lum

SeeFig. ) E'=—-E,B'=B.b)E'=F

E = \/Peggcos? o

The force acting on an electron moving along a
metal surface is ' = ¢(£ — YB) = 0. Therefore
E _ v
B~ ¢
P =260 B3 (inSI); P = B2 (inGHS).
_ cA
U= Guota)
_ k=1
v = CT—H'

a. The charges induced on the flat boundary cre-
ate an electric field perpendicular to the flat
boundary. Therefore, only the perpendicular
component of electric field strength of the wave
decreases by a factor of ¢

b. Induced surface currents create a magnetic
field whose induction is parallel to the surface.



12.1.32

12.1.33
12.1.34

Therefore, only the parallel component of the
wave’s magnetic field induction increases by a
factor p.

On different sides of the interface the electric
field strength and the magnetic field induction
are the same: £ — Ey = E,,B + By = B,,, and
B = E¥2X By = Ey¥°L B, = E,*Z (see Prob-

lem 12.1.7). From these equations it follows that

% = % At (/g1 < /€2 the signs of Ej

and F are the same, and for /e, > /&3 are oppo-
site. This means that in the first case the phase
of the reflected wave does not change, and in the
second case it changes by .

TEZrS
3

See Fig. In the GHS W, = ,Wa = 2E213.

12.2 Propagation of electromagnetic

12.2.1

12.2.2

12.2.3
12.2.4
12.2.5
12.2.6
12.2.7

12.2.8

12.2.9
12.2.10
12.2.11

12.2.12

12.2.13
12.2.14

12.2.15

waves

The wavelength and speed decrease by a factor
of n, the frequency does not change.

sinayg = %,Where k is an integer.
In k2 times

Ao = 13,5

2r?

[A(k+1)k]"

2r?

l:Talk}:

The intensity of radiation at other points will in-
crease.

Four times
See Fig.
Increased by a factor of 100 (a) and 324 (b).

f,a = “ETA/\‘? (multiplying by i means the

phase shift of the secondary wave by 7).

CcC =

a. R~1km.b. R=~1.5m.
l~1m,0.5 km, 150 km

a. The blue part of the filament spectrum is scat-
tered on the matte surface stronger.

c. Because of fluctuations in atmospheric air

13 GEOMETRIC

OPTICS.
PHOTOMETRY. QUANTUM
NATURE OF LIGHT

13.1 Straight-line propagation and re-

13.1.1

13.1.2

13.1.3

13.1.4

13.1.5

13.1.6

13.1.7

13.1.8

13.1.9

13.1.10

13.1.11

13.1.12

13.1.13

13.1.14

13.1.15

13.1.16

13.1.17

13.1.18

13.1.19

flection of light
See Fig.
See Fig
See Fig
An image of the Sun appears on the wall. In the
case where the size of the hole will be is larger
than the image of the Sun on the wall.
The mirror does not ”flip” the image. But an
opaque object appears to us upside down from
right to left, because usually we only see the side
reflected by the mirror if the object is rotated
180°

H =

o[>

Doesn’t change

The double reflection results in an inverted im-
age. From anywhere in the room

Note: Look in the kaleidoscope.

a = 120°

The course of the rays is shown in the figure.
r="1

=1

f=36cm

[ =20 cm.

f =48 cm.

See Fig

See Fig

density, the blue part of the spectrum is scat- 13.1.20 A paraboloid of rotation if its axis is parallel to

tered stronger.

67

the rays



13.2

13.21

13.2.2

13.2.3

13.24

13.2.5

13.2.6

13.2.7

Refraction of light. Lens formula

o = 48°

a.h=4m.b. h=4 km.

L+l
L+t

Decrease in times

n=1,13.

a. ag = 24,6° a. =49°, ay,c = 33,7°

b. Because of the total internal reflection of the
rays from the bubbles.

No

_ _In
R= (n—1)"

13.3 Optical systems

13.31
13.3.2
13.3.3
13.34
13.3.5

13.3.6

13.3.7

13.3.8
13.3.9

13.2.8 At a > arccos(2) the light already at the first 13.3.10

13.2.9

13.2.10

13.2.11

13.2.12

13.2.13

13.2.14

13.2.15

13.2.16

13.2.17

13.2.18

13.2.19

13.2.20

13.2.21

13.2.22

13.2.23

reflection will partlally leave the cone. At a <
arccos(%) the light will first be completely re-
flected from the side surface. After each reflec-
tion the angle between the ray and the normal to
the surface of the cone will diminish by 2«, and
after several reflections the light will leave the
cone through its surface again.

sina = ox=7 if 7x=r < 1; always passes if ;x5 >

H:%(arioR)

¢t =0 -V +7)

a. F=025m,D=+%=4dpt.b. R=0.6m
R=10.26m

Ay =afp = by =
f=-wnk

A =a(n —na)f

From the part of the lateral surface of the half-
cylinder bounded by the angle o = 2arcsm(%)
n=4,

n=

y=n

13.3.11
13.3.12
13.3.13
13.3.14

13.3.15
13.3.16
13.3.17
13.3.18

13.3.19

13.3.20
13.3.21

13.3.22
13.3.23

13.3.24

13.3.25

13.3.26 32

13.3.27

13.3.28
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See Figure: a) k= 3;b) k=300 k=3,d) k=3
See Fig.

f=20cm

f=2f.

v=2wf

b=

f=3m

t=5ms

%: 1%#7%:”k~

To the lens at distance | = % f
2

23m<li <32m;1l.om<ly <8m.
Dy = —5 Dpts, Dy =2 Dpts
Severely short-sighted.

The aperture limits the working area of the lens
and allows viewing objects less than 25 cm away
from the eye. The magnification will be & = %,
where z distance.

f=2bcm

tga’ = (1 - $)tga

k=2.

aly =20l —a—fb f =1
F=#mr=7+%

£~ £ + 3 from the first lens

At a distance greater than 10 ¢m from the near-

est lens

f>06m

x] = (d R>§,J]2 = Cff whend > R+ f;z = d{—dF

at f < d < R+ f; at d < F there is no solution.
(R—%

n= D

fi=3ff=5mlf

==

Will increase by %7 times

251

Atff7

will decrease by a factor of k.



13.4 Photometry 13.5 The quantum nature of light

1341

13.4.2

13.4.3

13.4.4

13.4.5

13.4.6

13.4.7

13.4.8

13.4.9

13.4.10

13.4.11

13.4.12

13.4.13

13.4.14

13.4.15

13.4.16

13.4.17

13.4.18

13.4.19

13.4.20

h=1m 135.1 By~ 107 % By ~4.1075 % F3~4-107° 1
FE1=1301z, E; =71 lx, E5 =25 lx 13.5.2 W = hv — eV}
E =41 luzx. 13.5.3 The velocities of the electron and positron must
124 (h20)?] be equal in modulo and oppositely directions.
E =g v=124-10% Hz
: o _sin(01+02)
See Fig. 1354 a. v = 02+Z bv = cm
At 80,000 times. 13.5.5 a.m = (1 — cos0) 2% = (1 — cos G)m 62
11—k
I'= ((1+k))' 13.5.6 @) When a photon is emitted in the direction of
Lok the atom’s motion
x ~ b light years. )
gLy % = 77”(“_2A”)2 +hv+e,mv =m(v — Av) + 2
& ~ (£)? where R is the radius of Venus, and r When a photon is emitted in the direction oppo-
is the distance from Earth to Venus. site to that of the atom,
T~ RTQ, where r is the characteristic size of the # = M +hv+e,mv=m(v+Av) — %
car In (1) and (2) m is the mass of the atom, Av and
, ) . .
The illumination of the image will decrease: the A'v are the change in velocity, £ is the change

in the internal energy of the atom, v/ is the
unknown photon frequency. For Av,A’v <« v
it follows from (1) and (2) that v/ = v—%. b)

1+
vVi=v(l-2).

upper part of the arrow-object - slightly more
than twice as much, the lower part slightly less
than twice as much

It will increase twice.
. 13.5.7 The attraction of photons to the star.
Erliegfhtt = (%)2
13.5.8 Av = ( o 2) ,v is the gravitational constant.
E=FEyr—f Ify—2¢ Ave =~ 10° Hz. Thermal atoms on the surface
2/ =(a=x)(e=])] 2 of the Sun affects the frequency of photons emit-
[, — LoD? ted by it to a greater than the gravitational field.
= L5
No. E"Law _ BEQZ 13.5.9 f (6 ]\/[) 10 pc
D=18m
~ 32T )4 & 770, where T ~ 6 - 10° K is the 14 SPECIAL THEORY OF REL-

surface temperature of the Sun ATIVITY

It won’t change.
14.1 Constancy of the speed of light.

The luminous flux from the star to the eye in- Addition of velocities

creases dramatically.

13.4.21 dy = % 14.1.1 I =15 km.
k 1412 v=6-10"7 =,
13.4.22 1) = to($2£1)%. s
138.4.23 n ~ (107r2L)~* 14.1.3 tga = ¢.
13.4.24 p=0.2 % 14.14 tgiA = % ~ Ysinow = 10~*sina, where
v =30 ’”” is the velocity of the Earth relative to
13.4.25 Eight times the Sun.

69



14.1.5

14.1.6

For station observers, the travel time of the light
signal, which three times traveled distance [ be-
tween stations is %, and the probe travel time
is %, v being the speed of the probe. The travel
times of the probe and the signal coincide: %
L Therefore, v = ¢. The probe’s apparatus
records a light signal that moves away from the
probe at speed c. Toward of the probe, a second
station moves towards it with speed v. There-
fore, the time of movement of the light signal
from the first station to the second one measured
by the probe equipment is equal to =] + 3> " is the
distance between the stations measured by the
probe equipment. The time of movement of the
light signal from of the second station to the first
one is equal to and the total time of move-

4 o+
and it is equal to the time of movement of

(0 u)?

ment of the light signal is equal to © iu) + =0

(c+u)’

the second station towards the probe - +. From
. 4 14 v _ U

the equation o T o T o = w Ve find

that v = 5. Thus, the observers of the station
and the instrumentation of the probe will record
the same speed of approach of the probe with the
second station, equal to .

For an observer at the first station, the travel
time of the light signal to the second station will
be o) +u) , L is the distance between the stations

at the time of emission of the signal and the
probe. The signal will return to the first station
for the same time. Therefore, at the moment of
signal reflection from the first statlon the second
station will move to the distance 2 - u (Fig.a)
and the distance between stations W111 be equal
tol = L. Therefore, the third time the signal

will be in transit time Nr—u =1L (p°+?j‘)2, and the
3ct+u

total signal travel time will be equal to L( L
Exactly the same time is in the way of the probe,
the time of movement of which is determined
through the de51red velocity of the probe v; by
the formula o +u Equating these times, we ob-
tain the equation L (iﬁrﬁ
determine v; =

- CSchu .

= o +u , from which we

For the observer of the second station, the sig-
nal travel time from the first station to the sec-
ond will be % During this time the first station

will move by distance %u (Fig.b), and therefore
the signal will return to the first station after

. '_Llu !~ .
time o — Lcou  After the reflection from
ctu c ctu

the first station the signal will return to the sec-
ond station after the same time. Thus, the to-
tal tlme of motlon of the signal will be equal

L _ L 3c— .
to & + 2L = T and is equal to the

14.1.7

70

probe travel time, and the probe velocity is equal
to the distance between the stations at the mo-

ment of the probe launch, divided by this time:

_ ct+u
V1= 3=z = C3cq
ctu ¢

Exactly the same velocities will be recorded by
the probe hardware: the first station will move
away from the probe with velocity c5 =%
second station is approaching with speed ¢

ctu
3c—u"

The velocities of both signals as observed from
the ship are the same. Therefore, for the space-
craft observer at the time of reflection the sta-
tions were at the same distance, and the signal
from them was reflected simultaneously, as in
this case simultaneously sent signals and will
return after the reflection at the same time. And
what is observed from the stations? The signals
relative to the ship are no longer equal to the
speed of light, but equal to either ¢ + v, or ¢ — v.
Therefore, the signal cannot be reflected simul-
taneously from the stations at the moment when
the ship was at the same distance from them. In
this case, the signal would travel faster to the
ship from the station to which the ship is mov-
ing. Moreover, signals cannot be reflected at all
at the same time. Indeed, for the simultane-
ously reflected signals to also arrive at the ship
simultaneously, the ship must be at a distance
Ez”; greater from the station it is approach-
ing than the distance to the station it is moving
away from. But then it would have to send sig-
nals to these stations at different times, since
only then would they arrive at these stations at
the same time. Therefore, the stations necessar-
ily observe the arrival of the signals at different
times, and at the moment of reflection the ship
is necessarily is observed at different distances
from the stations. To determine the difference in
the timing of the reflections of the signals from
the stations, we need to find the distance of the
ship from stations z and [ — = at the time of the
signals from the ship. These distances are found
from the condition of equality of signal travel
times:

(I 9) =

l—w+ T (1_3)

c c+v c

From this equation it follows that « 11 -
U)1,1—x = 1(1+2)l. Therefore, the signal travel
times from the ship to the stations are defined by
the formulas

it L

and the difference in signal reflection times by
the formula

R
51,

7'1=

T1 — T2 =



14.1.8
14.1.9

The distance to the stations at the moments of
reflections is easily found through 7,7,z and

11— .

(h=D)(-5%)
G (1+A)+1 ¢

l—x:21 =29 =

v = (1 — %)C,Ug =
Fig.a shows schematically two consecutive re-
flections of a radar pulse from an object. If
and 7, are the return times of the pulse, then
@ time interval between the first and the

c(t1—72)
2

second reflection from the object, and
is the path traveled by the object during this
time. So, the velocity of the object is determined
through the time of momentum return by the
formula

0(7'12*7'2) k 1

v= Crr1

c(ry +72> -

where k is the ratio of return times = And what 14 1 10
speed of the object will be obtained if we listen to

the general? F'ig.b shows the speed of the radar 14.1.11
pulse and the flight times of the pulse from re-
flection to reflection. In this case, the velocity 14.1.12
of the object approaching the station is deter-

mined through the values shown in F'ig.b by the 14.1.13
formula

r_ (cfu)‘rf'Jr(cfu)‘rz_

v 2(1, +7—2+) 14.1.14
In this formula we have to 7;", and 7, , determine
through the observed values 7, and 7. To do
this it is necessary to use the following obvious 14.1.15
relations o

_ T _ (c—w)
7_1 )2 + Tl 2 = 71,2, T,  (ctu) 14.1.16
from which it follows that 7i° = %, and
the velocity 14.1.17

) (=2 (k=De _ (1-27)

R [ ey (s ) B R o

This velocity v’ is different from velocity v and
is determined, as the general assumed, not only
by the ratio of times k, but also by the velocity
of the laboratory u relative to the Earth. But
does the The velocity v' with the approaching
velocity observed from Earth? After all, , and
79, the times of momentum return in the labo-
ratory system, do not coincide with the times of
return 7| and 7 observed from the Earth, only
their ratios are the same: 7 : o = 71 : 75 .
But the equality of these ratios is already suffi-
cient for v’ coincides with the approaching veloc- 14.1.18
ity, observed from the Earth. This result means
that the difference in the approaching velocities
recorded by the laboratory and Earth observers
is due to the fact that these groups record dif-
ferent speeds of the momentum of light relative
to the lab. The first group observes this veloc-
ity equal to the speed of light, while the latter,

71

depending on whether the pulse is flying away
from the lab or towards it, is less or more than
the speed of light by the value .

The speed of the laboratory u is found from the
equation

where o = 10~%. At this small « the velocity u ~
“‘Tcz =90 kT’" The velocity of the object relative to
the Earth is equal to the difference between the
velocity of the object approaching the laboratory
and the velocity of the laboratory, observed from
the Earth:

/ ?—u? v—u km
Vo=V FUS V- po U ooy =~ 100,000 =*
—90 km = 99,910 km,
v=2,9-108 &2

_ (vt$)
u = (1+#) .
T = 2nl
c(l——)
v = %( 1+ lg((Ll:ff)L) —1);at £, £ <« cweget
_
V= woh:
- (cz—vu— (e2—v2)(c2—u?))
Yo = (v—u)
(1422412
N=—"2 <
(1425 +23)
The figure shows the trajectories of the light sig-

nal as observed from Earth and from the rocket.
The minimum distance between the rocket and
the Earth is the same for both observations and
is equal to [. Therefore, the return time of the
signal is equal to 2 for observations from the
Earth, and the return time is equal to % for ob-
servations from the rocket. observations from
the rocket, the return time is (2). 1 2

cosa c\/ﬁ ’
where 8 = ¥ = sin . Thus, the time interval be-
tween the departure and arrival of the light sig-
nal on the Earth increases when observing from

a rocket by \/117? times.

Suppose the following happens. Several ob-
servers move near the Earth with different ve-
locities. A radar pulse reflected from one ob-
server has returned to the Earth. While this
pulse traveled, the hands of the clock at the
starting place made three complete revolutions,
during the second trip of the pulse the hands
made two more revolutions. Both the observer




14.1.19
14.1.20

from whom the impulse was reflected and all
other observers will record the events: three
turns of the hands of the earth clock during the
first trip of the impulse and two turns of the
hands during the second trip. Each revolution

for any observer lasts the same amount of time. 14.1.21

Therefore, for all observers, the ratio of the du-

ration of the first and second journeys of the 14.1.22

pulse is equal to the ratio of the number of turns
of the hands of the clock 3 : 2. The above exam-

ple illustrates the independence of the ratio of 14.1.23

the ratio of times characterizing the events from
the speed of the observers.

The period of oscillations of light walkers irre-

14.1.24

14.1.25

spective of their orientation according to obser- 14.1.26

1

vations from the station will increase by

times, and therefore the walkers will "walk”
in L times slower. To determine the dis-

tance between the mirrors I’ which is observed
from the station at the longitudinal walkers, we
define the period of oscillations of the walkers

through I’

_ 21’
T oce(1-p2%)

times the period of the

_ 4 4
=i T aip)

1
/1-82

walker oscillations %l measured in the rocket.
So,

This period of

_ —
TS T

21

c\/ 1-82

It follows from the last equation that !’
I\/1 — (2. This means that the walkers and the
rocket, and the people in it, will "flatten” by
\/11_? times in the direction of velocity Sc ac-
cording to observations from the Earth. Simi-
larly, everything will "flatten” at the station ac-
cording to observations from the rocket. The
relative motion of the station introduces many
changes in the observed motion picture. The for-
mer simultaneity of events is broken, and the

clock on the station runs slower by 11—62 times,
and everything shrinks by a factor of

1
1-p2
the direction of travel. But the "flattened” peo-
ple at the station with their "flattened” instru-
ments, using "slowed down” time and incorrectly
determining simultaneity of events, they get,
measuring the relative speed of light flying away
from them, not the speed ¢ — ¢, but the speed
c. The light, which is flying towards them, ap-
proaches to them not with speed ¢ + (¢, but, ac-
cording to their distorted measurements, at c.
So that would explain explain the difference in
measurements of the relative speed of light by

in

V=B 14127

the observers on the rocket. But in the same
way. the observers at the station could also ex-
plain it, thinking that they were fine and that
the distortions are observed by the rocket guys.

2 2 .
In /1 - % + % times

The speeds of the hares and Mazai are equal to
the previous speed of the fourth hare.

See Fig. Ay = 3, A_ =2\, =2

_ (1+8)
N — T
5~y /2

sina+2ﬁ+525ina
1+203 sin a+52

sina; =
In a frame of reference that moves with velocity
usin « in the direction opposite to the ship mo-
tion, the missile velocity v, is perpendicular to
the ship motion direction v;;v, and v; are de-
fined by the formulas

vp = usinay/1 — (%)% cosa, vy, = %

In the reference frame in which the ship velocity
is zero, the components of the missile velocity v |
and v||, perpendicular and parallel to the former

ship velocity vy, are defined by the formulas

\/u2+v272'uu cos a—(%%)?2 sin? a.

— (livusgsa)

2 2
vl=,/vy +v
1 I

14.1.28 tgv = 'ytg(%),fy __ 1

V1-p2

14.2 Time dilation, shrinking bodies

14.21

14.2.2

14.2.3
14.2.4

14.2.5

72

in moving systems. systems.
Lorentz transformation .

2.5 times

v >

Av =6-10* bz
Av=10" Hz

At a point moving at the speed of the wall,
the frequencies of the electromagnetic oscilla-
tions of the incident and reflected waves coin-
cide. Therefore, the frequency of the incident
wave v is related to the frequency of the reflected
wave v. the frequency of the reflected wave v/ by
the equality

v(1-5)
(1+8) -

|14 — 1% /!
i+p — @AY =



14.2.6

14.2.7

14.2.8
14.2.9
14.2.10

14.2.11
14.2.12

14.2.13
14.2.14

14.2.15
14.2.16

14.2.17

14.2.18

At points traveling at wall velocity, the fre-
quency of electromagnetic oscillation of the wave
in the dielectric and outside the dielectric is the
same. Therefore, the frequency of the wave out-
side the dielectric v is related to the frequency of
the wave inside the dielectric ' by the following

equality
v _ v _ (n=1)B
7A+8) = mam vy —V = rany
__ -

v 1—’:—;
In 5-10* years.

A pencil case moves towards the pencil with ve-
locity Bc. The length of the pencil case is %(7 =

1y/1 — B2) is 42 times less than the length of the
pencil vi. At the moment when the bottom of the
pencil case reaches the front end of the pencil,
the bottom will stop. However, the open end of
the pencil case will move with velocity ¢S until
the wave of "stopping” sections of the pencil case,
coming from its bottom with velocity 5, reaches
the open end. At this point, the length of the
pencil case is equal to the length of the pencil.
and the pencil case slams shut.

_ _ BB
tga = 5
2 2 2
_ cvg (vy—v3)
AV = TR
.0 _ (cosa+p) _ (14Bcosa)
o8t = Grgcona) f = oerat
_ _L _ mi(ltvu)
OT= T = e
vary
bm=2(/1+% -1),m= s 2 =t )

1—v2
2

The center of oscillation moves with velocity Sc.
The coordinates of the body relative to the center
are related to time ¢’ by the following relations:

a) 2 = %sin%(l + %), b) y' = Asin%,'y =
11— 2.

14.3 Transformation of electric and

14.3.1

magnetic fields
The distance between the charges in the plates
will decrease by a factor of v = \/1177, which

14.3.2

14.3.3

14.34

14.3.5

14.3.6

14.3.7
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will lead to an increase in the surface charge
density of each plate by a factor of ~.Therefore,
the electrical voltage will increase by a factor of

Y
E' =~E,B=3E =~8E

E, =~ -Fcosa, B = Esina, B = yfEcosa =
/BEJ_a’Y:]-\/]-_62~
E, = 27TP,BT = QVTBP, where v =

distance to the thread.

1

V157

r is the

1
V1-52

b. Will increase by a factor of v

a. pe = 22, pi = yp, v =

c. Different changes in the charge density of
electrons and ions during the movement of the
conductor leads to the appearance of an un-

compensated bulk charge density p’ = %

B%vp.The electric field of this charge is F
2
8305 " and the magnetic induction of a moving

conductor is B = %, where s is the cross sec-
tion of the conductor, and r is the distance to its
axis. Therefore, £ = 5B.

1
vk
the electron density, we will go into a state of
motion with a velocity of ;¢ through an inter-
mediate state of motion with a velocity of S,
in which the electrons are stationary and their
density is equal to p/, _7”, v =14/1— 2. Then,
informing the intermediate state of the velocity

a. p; = 11p, Wwhere ~; To determine

B%c = Ef 1,6’_12;’ we move to the desired state in
which the electron density is determined by the
formula p, = Tpigg = —m(1 - BB1)p.

b. Will increase by a factor of ~;.

C. E1 = BlBl-

a. E=—[3 x B).

b. In the moving state, the electric field E is
defined by the formula £ = —[8 x B], where

—

B’ is the magnetic field induction in the moving
state. At small 8B’ is close to B . Therefore,
B —[3x B

c. Both explanations are valid. This means that
the absolute motion of the magnet cannot be de-
termined.

a. As a test body we choose a straight conduc-
tor, which is stationary in the initial state and
in which conduction electrons move with veloc-
ity Sc. The density of electrons per unit length
of the conductor is —p, and the density of ions of



14.3.8

14.3.9

14.3.10

14.3.11

14.3.12

the crystal lattice of the conductor is +p. There-
fore, the conductor is not charged and the elec-
tric field in the initial state does not act on it.
In the —f3c¢ moving state, the conduction elec-
trons are stationary and the ions are moving at
a velocity of —fBc. The density of electrons in
the conductor will decrease by a factor of +, and
the density of ions will increase by a factor of ~.
Therefore, the conductor will be charged after
the transformation with density vp — £= B%p,
and the force 32vpE will act on the unit length
of the conductor in the transverse direction from
the side of the electric field £. But the conductor
is moving without acceleration. This means that
the force on the electric field side E is compen-
sated by the force acting on the magnetic field
side: % + B2ypE = 0,1 = —vpfc is the current

in the conductor after conversion, B is the mag- 14.3.13

netic field perpendicular to both the conductor
and the electric field strength. It follows from
the last formula that the magnetic field B ap-
pears in the transformed system, related to the
electric field by the relation B = [§ x E].

b. In the transformed system (see problem a),
the magnetic field is defined by the formula B =
[3x E'], where E’ is the electric field in the trans-
formed system. At low drift velocities, £’ is close
to E. Therefore, B ~ [§ x E.

a) Increase by —-L

times; b) Decrease in

V1-52
1 .
i times.
1 .
Increase by i times

By = —9L 45— @ 5 . —
max (R2 \/ﬁ) Y max (47TR2 \/ﬁ) ) mn

Q
(4w R?)

The figure shows a sphere around a stationary
charge and an ellipsoid arising from this sphere
when it is drifting together with the charge with
velocity Sc. The minor axis of the ellipsoid is
iny = \/1177 times smaller than the sphere.
On the surface of this ellipsoid there is an elec-
tric field, which used to be on the surface of the
sphere. The transverse component of this field
E, increases by v times, while the longitudi-
nal component £ does not change. Therefore
the tangent of the angle between the new field
strength and the drift direction will increase by

’14.3.15 will increase in

electric field will still be directed along the ra-
dius vector. However, the strength of the new
field will depend not only on the the distance to
the charge r, but also on the angle o« between
the direction of velocity ¢ and the radius vec-
tor r. For example, if we compare this strength
with the strength of a stationary charge, it will
will increase in the transverse direction by a fac-
tor of 42 times, and in the longitudinal direction
it will decrease by 7> times. For the other di-
rections, the intensity will be determined by the
formula

. 132 R

E= T% . (1—pB2 siﬁnz a)% o

There was no magnetic field in the initial state.
Therefore, the magnetic field induction is deter-
mined by the formula B = [§ x E].

When the system moves at a velocity of —fec,
the dielectric plate will stop and the capacitor
shells will move at a velocity of —3c. The den-
sities of surface charges on the linings will in-

crease by v = 1762 times and will be equal to

++0, where +o - densities of the surface charge
densities of the fixed capacitor shells. In ad-
dition, there will be a current with linear den-
sity £voBc. These surface charges and currents
will create inside the stationary dielectric elec-
tric voltage E' = 4”% and magnetic induction
B’ = +44wyBo. The motion of the new sys-
tem with velocity Sc returns it to its original
state. The electric and magnetic fields inside
the dielectric are determined by the field conver-
sion formulas, given in the condition of problem
14.3.8. a:

E =4moy?(L — %), B = 4oy B(1 — 1).

The motion of the state with velocity —(c leads
to a state in which the stationary dielectric is
in a magnetic field of induction vB,y = \/11_?
and in an electric field of strength v5B. The
magnetic field has no effect on the dielectric,
but the electric field, which is perpendicular to
the plate, is weakened by a factor of ¢ : £/ =
%BTB. The motion of the new state with veloc-
ity Sc returns the old state, whose electric field
is found by the electric field transformation for-
mula given in the condition of Problem 14.3.8.
a:E = 7?B(1 — 1)B. The potential induced by
this field is U = Eh = v*ShB(1 - 1).

(1+8)
(1-58)

times.

(1+2)

a factor of 7. The tangent angle between the new 14-3.16 Increase in NiED) times

field strength and the drift direction times the

(1+8)

tangent of the angle of the radius vector. So the 14.3.17 Will increase by a factor of =k



14.3.18 Will increase by a factor of %

14.3.19 Will increase in 2581 times.

V(1-5%)

Byi

14.3.20 Increase in s

times; p =

1
V1-82
14.3.21 No

3 2’ . / 2
14.3.22 E = 4nyjo — j(t' — 76)] = 4nlyo — jt' + @]

14.3.23 The longitudinal field does not change during
motion. Only the place and time of its of its ap-
pearance. Electric field in a stationary capacitor
E = 47(0 — jt). The electric field in a capacitor
moving with velocity fc,

B0 = 4nfo — j(t' — Z2)] = dn(o — 1t/ + LB7),

where [ is the distance from the front plate, v =

14.3.24 P =vM.

14.3.25 P =vM.

14.3.26 Fi = %5 Ry = i

14.3.27

14.3.28 No. In a moving capacitor, the components of the
force I acting on the first plate along and across
the velocity are equal to

Fy=QFEcosa,F| = QEsina(l - 5%),
and the components of acceleration are
a = kcosa,a; = ksina, k;—QEV ,

where Q, M, E are respectively the charge, rest
mass and electric field inside the capacitor. This
acceleration is perpendicular to the plate, equal
in magnitude to the acceleration of the second
plate and is opposite to the acceleration of the
second plate. Therefore, the capacitor will not
rotate.

144 The motion of relativistic par-
ticles in electric and magnetic
fields magnetic and electric
fields

14.4.1 a) In a system moving with velocity fc, the time
interval between the two events - crossing of the
field boundary by the electron - will be in v =

\/11—7 longer: T = 7.

b) In the first case, during the time 7 the mo-
mentum of the electron has changed by the value

14.4.2

14.4.3

1444

14.4.5

14.4.6
14.4.7

14.4.8

14.4.9

14.4.10

14.4.11

75

2ymecf, s0 T = 27(;”]3)6 8 where E is the elec-

tric voltage. In the second case, during the
time of motion 7', the momentum of the elec-
tron has changed by the value 71(’:’5)65 , where
Bic = 2Bc(1 + B?) - is the velocity of the elec-
tron after the field has acted on it. Therefore,
T =n~T.

In a frame of reference in which the field is sta-
tionary,

/ 2
= 2me'u12_7_ 1_u2’
[ v

eE 1757%
and the velocity of the electron v; = ((ffi;)) .
Therefore
B = 2m. (v4u) )
ler(1—27)4/1— 5]
E = MV
(ery/1-23)
a) Will increase by a factor of 14/1 — Z—j
v =02 4 a2 — 22
b) Will increase by a factor of S[1+ 2 (1 -

V1-%).

1 (v4u)

R =)
T = Mev 1 _ 1 :

T

2

p =p.In \/7 times
V= —S—

/1+('m,:2(;jR)2

COS (07 3

In = 52) times. In ,/sin?a + - 52)2 times
V= ————

1+(?;§’)
a) In a system moving with velocity (¢, distances

1 . r_ — 32
are reduced by i times. I’ = [\/1— (2. b)
In the first case
AAm = (—2— —m.)c? = eBl, ] = Ze(—L— —

-7 B\ i
1).

In the second case, the initially stationary elec-
tron, gaining velocity ¢, passes the distance

_ mec? 1 _
=75 ( V152 1),
moving in the direction of the field. During this
time the field moves a distance Al = ¢37, where




% is the time for the electron to gain 14.4.30 ev = \/(m.c?)2 + (hH)2 — m.c?
the velocity Sc. Therefore 14.4.31 The electron velocity Sc at the moment the field
I'=hL +Al=2Z(1—/1-p%)=1/1-p52 is turned on is perpendicular to F and is the
R, sum of the rotational velocity ;¢ and the drift
14412 F = 7 (=5 — 4/ -2 velocity kck = £ (see the solution of Problem
e Vit 14.4.12). Therefore, 31 = /B2(1 — k2) + k2, and
(2—- LBl Ymel Umaz = c%'
14.4.13 T = P;; (1+B1k)
14414 1= =5 =1 = - —£5)=0.34 .
ms C 2 \/m 0s(2 ) 14.5 Law of conservation of mass and
momentum
14.4.15 2N? = 1 = 2 - 10° times more than m.c?>. In
k = 2N — (%) ~ 2000 times more the energy of 14.5.1 m — M
electrons in collisions.
1452 m=% =442
14.4.16 tga. = 2%6;;1% . 2;””;22:EEtgap at o, < 1,0, ~ e ¢
> myC m - mc2 - -
52::521% 2mae 2 o, = 0.075 rad. 1453 my = 2, mg = "o p = mUVIZR)
14417 0y = U+ g sinta + (M2)2 - met 1454 m = (k+ Dm0 = ey/1 - &
14.4.18 & = \/(mpc?)? + (eBR)2 —mpc? =4,3MeV. ec = 1455 ¢, = 2 (my, —me) = 938 MeV, ey = 2 mmo—me) _
80,5 MeV 67 MeV
14.4.19 B = sw;a{:‘(€ — MeC ) = 0,04 Tl, N ~ 4% 14.5.6 ]\41 M+m ,p=mc
_ 1 _ .p 1
14.4.20 Rp =B €2 — (mp02)2 =13 km, Re =3 km. 14.5.7 v = (N;Tm)
14421 w=— B .
meel+22) 14.5.8 v = s, mo = \/mt(M — 2mt), t < k.
m ()2
14422 B S W S 0, 28 Tl 1459 M = mi + Mo,V =
) \/(m1v1)2+(m2w2)2+2m1 Mav1 V2 COS
= TMeC 11+m2 '
14.4.23 T By (m1+mz2)
2(14881) 14.5.10 m. = 0.51 MeV, m, = 939 MeV, mmy = 135
14424 T = T UTPPL) =
m T C2
14.4.25 ¢ = \/(m.c?)? + (eBh)? — m.c® = 8.5 MeV. 14511 5 = S 27) — 152 MeV.
14426 1= it 14.5.12 exc < 2mec? (P20 —1)2,
— M2 — 22 _ 2\ _ 12
14.4'27 e = \/ m662 GBR) [ (%)2] _ meCQ. 14.5.13 EK = MC \/(MC ) 66(56 +2mec ) EV'
14.5.14
14.4.28 vy, = cB
.. 2
14.4.29 If a constant homogeneous magnetic field with 14.5.15 v =c-cosa’,
induction B = v/1 — k2,k = £, in which the elec- 14516 ¢, — ¢ mro (Mg +4my) _ Pmy(mytdmy)
. . . o (2myp) =2 (2mpes)
tron rotates, moves with drift velocity kc, we ob- 62
tain a crossed field with magnetic induction B P
and electric intensity F, in which the electron _2A(mE-m?) o oimy 4y a3
makes drift motion. The maximum and mini- 14517 € = me V=25 - 1) =3,7-10
mum velocities of the electron are defined by the poo)
formulas 14.5.18 ¢ = mpc2\/1 + ( ms etg?a?
Umaz = Clﬁjgkkvvmm pe=cit gkk 14.5.19 a. v = Jc,Am =m. b. u > ;¢
where (3;c is the velocity of the electron in the .
initial state. From the above equations we find 14.5.20 ¢4, = €[1 — (m’:ni)][l /1 — (M=205)2] = 4,4

_ 2k (+E%)8)
Umaz = C a1K2y2k0)

76

0

GeV; Enin =0



14.5.21 The range of neutrino energies is from zero to
2
3(my — Qm’"“ )c?, the range of kinetic electron en-

(my 7me)2c2
(2my,)

14592 ¢, = o SHV/ETm?

2€+€ef\/6§7(m602)2

ergies from zero to

14523 mf\/ = mﬁrﬂ; = M +m — mv.
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