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1 Kinematics

1.1 Constant Speed Motion

1.1.1 v = 200 m
s .

1.1.2 v = 0.7 km
s ; southeast.

1.1.3 v = 3 m
s ; 1 m from the ceiling and 2 m from the

side wall.

1.1.4 At a distance of 1.15 m from counter A.

1.1.5 AO = L 3tA−2tB−tC
2(tA−tB) , tO = tB − 1

2 (tA − tB).

1.1.6 l′ = l (v−u)(v+u)

1.1.7 v = c (τ0−τ)(τ0+τ)

1.1.8 ν′ = ν (w−u)
(w−v)

1.1.9 a. At t < l
v the boundary of the region is a cone

with the apex at distance vt from the end of the
rod, passing into a sphere of radius ut touching
it. At t > l

v - spheres with centers at the end of
the rod and radius ut and u(t− l

v ) with a tangent
conic surface. b∗. cosα = u

v .

1.1.10 From the region bounded by the angle α =
2arcsin(uv ) with vertex at point A, whose bisector
is the highway.

1.1.11 v = cl√
l2−c2∆t2 .

1.1.12 u = v
sinα

1.1.13 See figure

1.1.14 The ordinate and abscissa of the
intersection point of the graphs x1 = vt

and x2 = a+ v(t−t1)
2 give the time and

coordinate of the point of particle collision:
t′ = (2a−vt1)

v , x′ = 2a− vt1

1.1.15 See Fig.; b) vav = 0 c) vav = 1 m
s

1.1.16 See Fig.
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1.1.17 See Fig. (a) The return of the beam along the
x-coordinate takes a very short time, so that
few electrons fall per unit length of the
luminescent screen surface.
See Fig. b) for τyτx = m

n , where m and n are
any integers.

1.1.18 x = 2lv v sinα+
√
c2−v2 cos2 α

c2−v2

1.1.19 β = 2α. In the direction opposite to the initial
one.

1.1.20 tgφ = 2ma
(nb) where m and n are any integers.

1.1.21 (−cx, cy, cz), (−cx,−cy,−cz).

1.1.22 ∆t
t =

√
(r2−h2)
(R2−h2)

1.1.23 See Fig. Zero at the walls. Highest at any loca-
tion at a distance from the walls, greater than
2R, and equal to 2R

(L−2R) at L > 4R; anywhere at
a distance from the walls greater than L − 2R,
and equal to one at 4R > L > 2R.

1.2 Variable speed movement

1.2.1 vav =
2
πv

R−r
R+r is directed along the interface.

1.2.2 t = 12 s, x = 24 m

1.2.3 L = v0t+
v0(t−t0)2

2t0

1.2.4 Any graph with a coordinate change over the
specified time of 20 m and with the greatest
”slope” of the tangent is 15 m

s .

1.2.5 x > l(v1v2 − 1)

1.2.6 x = (π4 )v0t0

1.2.7 The average speed is greater than the initial
speed, and the final speed is zero.

1.2.8 v =
√
La

1.2.9 v =
√

N
b

1.2.10 t = R
q

1.2.11 a. v =
πv30t

2tg2α
s b. v = 1

2

√
q
πht

1.2.12 q = 126 cm3

s

1.2.13 a = 277 m
s2 ; 28 times.

1.2.14 v1 = 43 m
s ; v2 = 423 m

s

1.2.15 See Figure; v = 600 m
s . From 6 to 6.9km.

x = 6.9km. Check the equality of the areas in
the graph of the acceleration above and below
the t-axis

1.2.16 4 and 16

1.2.17 See Fig. The ratio of the acceleration
modules is 2.

1.2.18 See Fig.

1.2.19 v = 0.72 cm
s

1.2.20 t = (2 +
√
2)t0

1.2.21 t =
(2t1t2−t21+t

2
2)

[2(t1−t2)]

1.3 Motion in the field of gravity.
Curvilinear motion

1.3.1 t = v
g −

∆t
2

1.3.2 a. t =
√

2D
g . b. On a circle of diameter gt2

2 with
upper point A.

1.3.3 At an angle of φ
2 to the vertical.

1.3.4 vB =
√
v2A + 2gh.

1.3.5 t = v
g (sinφ− cosφtgα)

1.3.6 a) vx = v cosφ, vy = v sinφ− gt. b) x = (v cosφ)t,
y = (v sinφ)t− gt2

2 . c)y = xtgφ− gx2

2v2cos2φ = xtgφ−
gx2

2v2 (tg
2φ + 1). d) T = 2v

g sinφ,H = v2

2g sin
2φ,L =

v2

g siN2φ

1.3.7 L =
√
2 v

2

g

1.3.8 L = 2v2

g
cos2β
cosα ((tgβ − tgα)

1.3.9 v =
√

L(a+ g).

1.3.10 H = 2u
g (v cosα− u)tg2α.

1.3.11 L = 2v2

g(tgβ+tgα) .

1.3.12 m = 7kg.

1.3.13 a) tgφ =
v2±
√
v4−2gv2y−g2x2

gx . b) y = v2

2g −
gx2

2v2 .

c)vmin =
√
g(y +

√
x2 + y2)

1.3.14 xrel =
(v cosφ)
Deltat ; yrel = (v sinφ)∆t − g∆t2

2 − g∆t · t,
where t is time elapsed after the second body
took off. Relative velocity is constant and ver-
tically downward and is equal modulo to g∆t.
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1.3.15 v =
√

2πRgn
sin2α , where n is any natural number; at

α = 0 the velocity can be any modulo.

1.3.16 t = 2v
g ctgα at v cosα <

√
2gl sinα;

t = v
g ctgα(1−

√
1− 2gltgα

v2cosα ) at v cosα >
√
2glsinα

1.3.17 v1 = g∆t sinα, v2 = g∆t cosα.

1.3.18 R = gT1T2

(2
√
2)
.

1.3.19 v =
√
g[2(H − h) + L].

1.3.20 vε = 1675 km
h , aε = 0, 034 m

c2

vL = 838 km
h , aL = 0, 017 m

c2 .

1.3.21 v =
√
gR = 8kms .

1.3.22 a < (4+π2)v2

(2πl) .

1.3.23 See Fig.

1.3.24 At(
√
3
2 )− 102 m

s ; at5 · 10
−5rad;

ω = 5 · 10−3 s−1.

1.3.25 a =
√

k2 + k4t4

r2 .

1.3.26 v =
√
gr.

1.3.27 v =
√
5gR.

1.3.28 27.5 and 42.4 km; 18.3 and 52 km;
0.2 and 73.4 km.

1.3.29 a = (v
2

R ) cos2 α.

1.3.30 t = (Vg )
√
9 sin2 α− 8 at sinα >

√
8
9 ;

t = 0 at sinα <
√

8
9 .

1.4 Galileo’s transformation

1.4.1 In the frame of reference of the second ship
the first ship moves in a straight line along
the vector v1 − v2. The perpendicular dropped
on this straight line from the location of the
second ship will be the shortest distance.

1.4.2 See Fig.

1.4.3 Exactly the same as the observer moving with
particle A.

1.4.4 See Fig.

1.4.5 a. The bucket must be tilted in the direction of
the movement of the platform at an angle φ to
the vertical: tgφ = u

v . b.u = 10
√
3ms .

1.4.6 vmax = v
√
3.

1.4.7 t = 2Lpv2−u2 sin2 α
v2−u2 . Along the trace.

1.4.8 a) ∆v = −2(v + u). b) ∆v = −2(v − w). (The
projection on the direction of the initial is con-
sidered positive).

1.4.9 a) u = v. b) u =
√
v2 + 4vw cosα+ 4w2. c) u =√

v2 + 4vw cosα cosβ + 4w2 cos2 β

1.4.10 ν =
√

v2+u2

2(R−r) .

1.4.11 t = 2
√

u2

g2 + 2h
g .

1.4.12 The projection of velocity in the horizontal direc-
tion vx = v − 2u ; the projection of velocityin the
vertical direction vy = (2n−1)Lg

(v−u) .

1.4.13 n = (v1+v2)
(2R) .

1.4.14 sinα = u
v .

1.4.15 u = v
√
3.

1.4.16 In the new frame of reference, the geometry of
the beams and, hence, the area of their intersec-
tion are the same are the same as before. The ve-
locity of the particles is not necessarily directed
along the beam.

1.4.17 In
√
1 + v2

u2 times will change.

1.4.18 α = 60◦, l = 200
√
3 ≈ 345 m.

1.5 Motion with links

1.5.1 vB = 2vA.

1.5.2 vk = ωR; vg = ω(R− r).

1.5.3 u = v
√
3.

1.5.4 a = gctgα

1.5.5 See Fig.

1.5.6 (−2, 8; 3, 1)

1.5.7 a. uAB = v√
2
. b.u1 =

√
u2 − v2

1.5.8 See Fig. a = ( v
2

R2 )r; rB = (R+r)2

r , rH = (R−r)2
r .

1.5.9 u = vR
R cosα−r ; ω = v

R cosα−r ;
to the right for cosα > r

R ,
to the left for cosα < r

R .

1.5.10 The trajectory of the wheel rim point runs
along the diameter of the cylinder.
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1.5.11 a. One turn. b. For 4 min.

1.5.12 a = 4ω2R.

1.5.13 u = v cosα.

1.5.14 At the center of the square in time t = a
v .

1.5.15 See Fig.; vB =
2v2At√
L2+v2At

2

1.5.16 u = v2t√
L2−v2t2 .

1.5.17 ω = (v sin2 α)
H

1.5.18 ω′ = ω
2 sin2(α2 )

1.5.19 v = uR√
R2−h2

.

1.5.20 d = π(R2−r2)
(vt) .

2 DYNAMICS

2.1 Newton’s Laws

2.1.1 Since the sum of the external forces is zero, the
center of mass of the baron-horse system is at
rest (according to the condition of the problem,
the baron is stuck in a swamp).
The mechanical system, which includes the
baron-horse, will be considered closed. There
are no external forces inside a closed mechanical
system, the interaction is caused only between
the bodies of the baron-horse system, more pre-
cisely by the hand and the pigtail on the baron’s
head.
According to Newton’s third law, forces arise
in pairs, equal in modulus, directed along one
straight line and opposite in direction. Thus, the
geometric sum of the internal forces and the mo-
ments of these forces relative to the fixed center
is zero. The Baron violated Newton’s third law.

2.1.2 According to Newton’s second law,
ma⃗ = mg⃗ + N⃗ + ⃗Fmp

In projection to the direction of motion
ma = Fmp(1)

To find the friction force, we need to determine
the acceleration of the body. Let’s propose one of
the methods. The distance traveled by the body
to a stop is
l = vav; t =

v0+0
2 ; t = v0

2 t

Acceleration of the body

0 = v0 − at, from where v0 = at

Then
l = at

2 t =
at2

2 , from where a = 2l
t2

Making a substitution in (1)
Fmp =

2ml
t2

Calculations
Fmp =

2·0,1kg·20m
(5s)2 = 0.16N

Interestingly, acceleration can be obtained even
easier when using the ”method from the oppo-
site” in solving the problem, if from the stop
point, accelerate the puck back to the stick, then
l = at2

2 , and a = 2lt2

Answer:
F = 2ml

t2 = 0, 16N.

2.1.3 The electric force informs the electron accelera-
tion
a = Fel

me

where a =
vy−v0y

t , because v0y = 0 – the electron
flies perpendicular to the screen, then
vy
t = Fel

me
, and Fel =

mevy
t (1)

Here vy is the vertical component of the veloc-
ity that the electron will acquire when leaving
the plates. To determine the electric force, it is
necessary to find the vertical velocity and the
time of movement of the electron before depar-
ture from the plates. The velocity is determined
from the condition
y = at2

2 =
vyt

2

2t =
vyt
2

vy = 2y
t , where t = l

v , (2)

therefore, the vertical component of the velocity
vy = 2yv

l (3)

Substituting (2) and (3) in (1), we get

Fel =
2ymev

2

l2 (4)

After leaving the plates, the electron then moves
by inertia. The tangent of the angle at which the
electron flies horizontally, after departure from
the plates, is
tgα =

vy
v = 2y

vt =
2y
l

On the other hand
tgα = Y−y

L− l
2

= 2(Y−y)
2L−l

Then
2y
l = 2(Y−y)

2L−l

After simple transformations , we find
y = Y l

2L .(5)
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Let’s make a substitution (5) in (4) and find the
answer to the question
Fel =

2mev
2

l2
Y l
2L = meY v

2

lL

Answer:

F = meY v
2

lL

2.1.4 Forces acting on the cargo Newton’s second law:
T⃗1 + T⃗2 + T⃗3 + T⃗4 +mg⃗ = ma⃗

Write down the system of equations in projec-
tions on
the Ox and Oy axes:{
T4 − T3 = Mg

T2 − T1 = ma

Hence
a = g T2−T1

T−4−T3

Answer:
a = g T2−T1

T4−T3

2.1.5 If we consider a rod with a mass of m as a single
whole, then it will move with acceleration
a = F

M .

Because the rod is inextensible, then the accel-
eration of all its parts is the same and equal to
a

Consider a small section of a rod of length dx and
mass dm. Since the rod is homogeneous
dm = mdx

l ,
we write down Newton’s second law for this sec-
tion.
adm = F (x+ dx)− F (x)(1)

Where
F (x + dx) and F (x) are the force of interaction
with neighbors
Let ’s integrate expression (1) along the horizon-
tal x coordinate:∫ l
x
amdx

l =
∫ l
x
dF

ma l−xl

F (x) = F (1− x
l )

Answer:
T = F (1− x

l )

2.1.6 Let’s write down Newton’s second law for both

bars along the horizontal axis
{
m2a = F2 − T

m1a = T − F1

Reduce by acceleration a
m2

m1
= F2−T

T−F1

m2

m1
= 2αt−T

T−αt

Express T

T = αt 2m1+m2

m1+m2

From where, the time before the thread breaks
T

t = T (m1+m2)
α(2m1+m2)

.

Answer:
t = T (m1+m2)

α(2m1+m2)
.

2.1.7 Let’s write down Newton’s second law with an
astronaut
kx2 = (m0 +m)a2

And with an empty chair
kx1 = m0a1

Let ’s take into account the equidistant motion{
k
a1t

2
0

2 = m0a1

k a2t
2

2 = (m0 +m)a2

From the first equation
k = 2m0

t20

We substitute it into the second

m = m0(
t2

t20
− 1).

Answer:
m = m0[(

t
t0
)2 − 1].

2.1.8 Let’s write down Newton’s second law for the
horizontal axis Ox{
F2 − F = m2a

F − F1 = m1a

From here we express the mass ratio
m2

m1
= F2−F

F−F1

Answer:
m2

m1
= F2−F

F−F1

2.1.9 1. The movement of the container can be divided
into three sections: on the acceleration section
OA. on the piston side, a force F = nmg acts,
which accelerates the container to a speed of v0;
in the second section AB, the container moves
like a body thrown vertically upwards, in the
third section, after stopping, the container with
the equipment will make a free fall to the bottom
of the shaft.
2. We write down the equation of the basic law
of dynamics for the acceleration section, which,
in combination with the kinematic conditions of
equidistant motion, allows us to determine the
values y1, t1 and v0
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nmg −mg = ma

a = g(n− 1) = 1240 m
s2

V0 = a∆t = g(n− 1)∆t = 50 m
s

y1 = a∆t2

2 = g(n−1)∆t2

2 = 2 m

3. Determine the time of lifting the container
from the point A and to point B and the value y2

t2 = v0
g = (n− 1)∆t = 5 s

y2 = v0t2 − gt22
2

y2 = g(n− 1)2∆t2 − g
2 (n− 1)2∆t2

4. Thus, the container will stop when it reaches
a height:

y3 = y2 + y1 = g(n−1)∆t2

2 + g(n−1)2∆t2

2

5. The time of the container falling from a height
of y3
t3 =

√
2y3
g = ∆t

√
n(n− 1) = 5 s

6. The residence time of the container with the
equipment in the ”airless” space
t = ∆t+ t2 + t3

t = ∆t[1 + (n− 1) +
√
n(n− 1)]

t = ∆t[n+
√

n(n− 1)] = 10 s

7. The weightlessness condition of the equip-
ment in the container will be tested for a time
tH = 10 s

Answer:
t = n∆t(1 +

√
1− 1

n ); tH ≈ 10s

2.1.10 When simulating weightlessness in a swimming
pool, astronauts are affected by the resistance
force of the medium, which will prevent move-
ment by inertia. In addition, the internal or-
gans of astronauts in the pool will not be in a
state of weightlessness and will function differ-
ently than in zero gravity.

2.1.11 Let’s write down Newton’s second law for the
vertical axis{
m1a = T −m1g

m2a = m2g − T

From here we express the acceleration, which
will be the same for both loads due to the inex-
tensibility of the thread

a = gm2−m1

m2+m1

We substitute into the system of equations and
find the tension force of the thread T

T = 2m1m2g
m1+m2

The answer:

a1 = a2 = gm1−m2

m1+m2

T1 = 2m1m2

m1+m2
g, T2 = 2T1.

The positive direction of acceleration corre-
sponds to the lowering of the load m1.

2.1.12 Let ’s denote the mass of the painter by M1 , and
the mass of the chair by M2. Let’s write down
the equations of motion of the painter and the
chair:{
M1a = T −M1g + P

M2a = T −M2g − P

where P is the pressure force of the painter on
the chair.
Subtracting the lower equation from the upper
one, we find
a = 2P−(M1−M2)g

M1−M2
= 1

3g

Then adding up the equations of motion, we find
2T = (M2+M2)(a+ g) = 4

3 (M1+M2)g = 1.1 ·103
N

This is the full load on the block:
N = 2T = 1.1 · 103 N

Answer:
a = 3.5mc2

T ≈ 1.1 · 103 N

2.1.13 Let’s write down the equilibrium condition for
the two lower balls on the vertical and horizontal
axes{
mg = F1 sinα

Fx = F1 cosα

where P is the pressure force of the painter on
the chair.
And for the upper ball
T = mg + 2F1 sinα

T = 3mg

Respectively, when the thread burns out, the
force T = 3mg will act down on the upper ball.
From Newton’s second law, its initial accelera-
tion is found as
a = T

m = 3g

On the lower balls, a force Fx will act in the hor-
izontal direction, which will be compensated by
a force F1 cosα, and gravity mg − F1 sinα

Thus, the lower balls will be in zero gravity a = 0

Answer:
The acceleration of the upper ball is 3g, the ac-
celeration of the lower balls is zero.
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2.1.14 When the vibrations have already stopped, the
balls move with the same acceleration a.
Let’s write down Newton’s second law{
m1a1 = −k∆x

m2a2 = −F + k∆x

Reduce by a
m1

m2
= −k∆x

−F+k∆x

Express ∆x

∆x = F
k

m1

m1+m2

Immediately after after the termination of the
force , the elastic force k∆xwill act on the bodies,
which will cause acceleration{
m1a1 = −k∆x

m2a2 = k∆x

From where we express a1

a1 = − F
m2+m1

And similarly a2

a2 = Fm1

m2(m1+m2)

The answer:
x = − Fm1

k(m1+m2)
;

a1 = − F
m2+m1

,

a2 = Fm1

m2(m1+m2)
.

2.1.15 1. The springs in this problem are connected in
parallel, their deformation is the same
∆x1 = ∆x2 = ∆x

2. The force acting on the mass from the springs.
It is defined as the sum of
F = F + F1

, or
k∆x = k1∆x+ k2∆x

3. Write down the equation of mass motion un-
der the action of an equivalent spring with a
stiffness of co, which will determine the maxi-
mum displacement
ma = (k1 + k2)∆xmax

∆xmax = ma
(k1+k2)

4. The maximum values of the forces acting on
the mass
F1max = k1∆xmax

F2max = k2∆xmax

Answer:
xmax = ma

(k1+k2)
;

F1max = k1xmax,

F2max = k2xmax.

2.1.16 1. When the springs are connected in series,
their deformation will be different with the same
acting force, this circumstance allows us to de-
termine the total stiffness of the springs as fol-
lows
∆x0 = ∆x1 +∆x2 = F

k1
+ F

k2
= F

k0

k0 = k1k2
k1+k2

2. The combined effect on the mass of the
springs at rest will be equal to the applied force
F

k0∆x0 = F

∆x0 = F (k1+k2)
(k1k2)

Answer:
x = F (k1+k2)

(k1k2)
.

2.1.17 1. The body can be considered as free if the
bonds are replaced by their reactions. The fric-
tion force in this case is caused by the action of
a magnetic force, i.e.
Ffr = µFm

2. The mass equilibrium condition in this case
will take place when the modules of gravity and
friction force are equal

m0g = µFm ⇒ Fm = gm0

µ

3. When the body begins to move at m > m0,
then the equation of Newton’s second law will
be valid, which in projection on the y axis will
be written as follows
mg −m0g = ma

a = gm−m0

m

Answer: F = m0g
µ ;

a = g(m−m0)
m

2.1.18 1. If a horizontal force is applied to the body,
and despite their efforts they do not move, then
it is natural to assume that something prevents
this. And this ”something” is the friction force
of rest, equal in magnitude to the applied force.
The magnitude of the resting friction force may
vary depending on the magnitude of the applied
force. The greatest value of the friction force, at
which sliding does not occur yet, is defined as:
Ffr(max) = µN = µmg = 51 N

2. The friction force of rest, like any decent
force, has a direction, it is directed towards a
possible (virtual) movement, and with zero ex-
ternal force, the friction force will also be zero.
Thus, the resting friction force varies linearly
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from zero to the maximum value, remaining con-
stant thereafter. An external force begins to in-
form the body of acceleration.

2.1.19 Let’s conduct a visual experiment, put a pen on
a piece of paper and slowly pull it aside
At some point, the pen will go in the opposite
direction and slip out from under your hand
Using a special program, we will determine the
angle of inclination of the handle at this moment
It turned out
α = 7◦

Let’s display the forces acting on the handle
Since the friction force is the friction force at rest
Ffr = µN

We write down the equilibrium condition at the
critical moment{
µN = F sinα

N = F cosα

From where
µ = tanα

We substitute experimental data
µ = tan 7◦ = 0.12

2.1.20 1. The friction force modulo cannot exceed the
value Ffr(max) = µN , where N is the sum of the
projections of all forces in the direction perpen-
dicular to the possible displacement. At equilib-
rium, the friction force is equal to the sum of the
projections of forces on the direction of motion.
Thus, at rest
Ffr = mg sinα

2. Otherwise, at µ ≥ tanα

Ffr = µmg cosα

3. The maximum value of the friction force will
occur at angle α0

α0 = arctanµ

Answer:
Ffr = mg sinα at tanα ≤ µ

Ffr = µmg cosα at tanα ≥ µ.

2.1.21 1. Discarding the bonds imposed on the box and
replacing them with reactions, it can be consid-
ered as a free body capable of moving along the
OX axis. The friction force in this case is di-
rected towards acceleration, i.e. against the pos-
sible movement of the box.
2. The equation of Newton’s second law al-
lows us to determine the maximum acceleration
value

µmg cosα−mg sinα ≤ ma

a ≤ g(µ cosα− sinα)

Answer:
amax = g(µ cosα− sinα)

2.1.22 A body on an inclined plane is under the action
of three forces: gravity F⃗1 = mg⃗, friction force
F⃗2 = −µmg and the normal coupling reaction N⃗ ,
however, with further consideration of the mo-
tion, the normal reaction can not be considered,
because its projection onto the horizontal axis
along which it moves the body is equal to zero.
The equation of Newton’s second law in projec-
tion on the OX axis when the body moves up-
wards in vector form is written as follows
F⃗1 + F⃗2 = ma⃗

Let’s determine the projections of the acting
forces on the Ox axis and write down the equa-
tion of Newton’s second law
F1x = mg sinα, F2x = µmg cosα

µmg cosα+mg sinα = ma

Divide both parts of the last equation by the
mass m and express the acceleration value
a = g(sinα+ µ cosα)

The time of the body’s upward movement t1 is
determined from the condition that the velocity
is equal to zero at the end of the ascent
0 = v0 − at⇒ t1 = v0a = v0g(sinα+ µ cosα)

The downward movement of the body corre-
sponds to the equation
mg sinα− µmg cosα = ma

a = g(sinα− µ cosα)

The velocity will become equal to v0 only at the
end of the descent, because the conservation law
no one canceled the energy, so
dv
dt = g(sinα+ µ cosα)∫ v0
0

dv = g(sinα+ µ cosα) =
∫ t2
0

dt

t2 = v0g(sinα+ µ cosα)

The required time is determined as the sum of
t = t1 + t2

t = 2v sinα
[g(sin2α−µ2cos2α)]

The answer: t = 2v sinα
[g(sin2α−µ2cos2α)]

2.1.23 1. The normal coupling reaction in this case will
be determined by both gravity mg and the pro-
jection of the applied force on the OY axis:
N = mg − F sinα

The friction force is defined as:
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Ffr = (mg − F sinα)

2. The basic law of dynamics, thus. it will be
written as follows:
F cosα = µ(mg − F sinα)

3. It is easy to determine the desired accelera-
tion from the equation of Newton’s second law
a = 1

m (F cosα− µmg + F sinα)

a = F
m (cosα− µ sinα)

Answer:
a = ( Fm )(cosα+ µ sinφ)− µg, if the expression is
greater than zero, otherwise a = 0

2.1.24 Forces acting on the cylinder: gravity F⃗t = mg⃗
two forces of normal reaction of the faces of the
dihedral angle N⃗1 and N⃗2, two forces of friction
of the cylinder on the face ⃗ffr1 and ⃗ffr2 (see fig-
ures). Since the cylinder has axial symmetry
and the planes of the dihedral angle are sym-
metrical with respect to the vertical
|N⃗1| = |N⃗2| = N ⃗ffr1| = | ⃗ffr2| = ffr

According to the Coulomb — Amonton law
ffr = µN.

The basic law of dynamics for a cylinder has the
form
ma⃗ = mg⃗ + N⃗1 + N⃗2 + ⃗ffr1 + ⃗ffr2

Since the cylinder is stationary in the plane of
section perpendicular to the edge of the dihedral
angle. that is, projecting this equation onto the
axis. perpendicular to the edge, we obtain (see
Figure b)
2N sin α

2 = mg cosβ

In projection onto the edge (axis OX), the dy-
namics equation for the cylinder is written as
max = mg sinβ − 2Nµ

Substituting N here, we find the acceleration of
the cylinder
ax = g(sinβ − µ cos β

sin α
2
)

Answer:
a = g(sinβ − µ cos β

sin α
2
) at µ ≤ tanβ sin α

2

a = 0 at µ > tanβ sin α
2

2.1.25 1. Due to the weightlessness and inextensibility
of the thread, as well as the ideal properties of
the block (no losses and low weight), the problem
can be solved in the following approximation)
a1 = a2 = a

T1 = T2 = T

2. The equations of motion of goods in projection
on the vertical axis in this case are written as

follows:
{
m1a = m2g − T

m2a = T −m2g − Ffr

3. Solving the equations together, we get
a =

(m1−m2)g−Ffr
m1+m2

4. Substituting the acceleration magnitude into
the first equation of the system allows us to de-
termine the tension threads
T = m1

2m2g+Ffr
m1+m2

Answer:
T = m1

2m2g+Ffr
m1+m2

2.1.26 Consider the forces acting on the box (Fig.).
These are gravity mg⃗, rope tension force F⃗ , im-
pact reaction force N⃗ and friction force F⃗fr, the
value of which F⃗fr = µN . We will project all
forces in the direction along the convergence and
perpendicular to them and write down the cor-
responding equations of motion.
Since the box does not move in the direction per-
pendicular to the convergence, the sum of the
projections of forces in this direction should be
zero, that is
N + F sin(β − α)−mg cosα = 0, (1)

Along the convergence, the box moves with ac-
celeration a (in the special case, with uniform
motion a = 0), so the sum of the force projections
should be equal to ma:
F cos(β − α)−mg sinα− µN = ma.(2)

From equations (1) and (2) we obtain:
F = ma+mg(sinα+µ cosα)

cos(β−α)+µ sin(β−α) .(3)

The resulting expression for the force F angle
β includes only the denominator. Therefore, the
magnitude of the force F will be minimal at such
a value of the angle β at which the denominator
in formula (3) is maximal, that is, the maximum
value
cos(β − α) + µ sin(β − α).

Let’s do some transformations. Let’s imagine
the coefficient of friction µ as the tangent of some
angle γ:
tan γ = µ; γ = arctanµ;

sin γ = µ√
1+µ2

; cos γ = 1√
1+µ2

.

Then you can write:
cos(β−α)+µ sin(β−α) =

√
1 + µ2 cos(β−α−γ).

The last expression is maximal and equal to√
1 + µ2 at β−α− γ = 0, that is , at β = α+ γ =

α+ arctanµ.(4)
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With such a value of the angle β and the min-
imum force F . Moreover, if the box moves uni-
formly (a = 0), then
Fmin = mg(sinα+µ cosα)√

1+µ2
.

and when moving with acceleration a

Fmin = ma+mg(sinα+µ cosα)√
1+µ2

.

However, this solution is not true for any accel-
eration. Since the direction of force F⃗ does not
depend on a, and the absolute magnitude of the
force F⃗ increases with increasing acceleration
, then at a certain acceleration value a = a0 ,
the force F⃗ will become such that its component
F sin(β−α), perpendicular to the inclined plane,
will be equal in absolute magnitude to the com-
ponent of gravity mg cosα. In this case , both
the force N⃗ and the force F⃗ will vanish. In the
future (at a > a0), in order for the box not to
break away from the skids, the direction of force
F⃗ must change with increasing acceleration so
that the component of force F⃗ perpendicular to
the inclined plane remained equal to the compo-
nent of gravity, that is,
F sin(β − α) = mg cosα

For the components of these forces parallel to the
inclined plane, we can write
F cos(β − α)−mg sinα = ma

From the last two equalities we find
tan(β − α) = g cosα

g sinα+a

from where
β = α+ arctan g cosα

g sinα+a

The value of a0 can be found from the consider-
ations that for a = a0 the value of the angle β
from (4) and (5) coincide:
α+ arctan g cosα

g sinα+a0
= α+ arctanµ

from where
a0 = g( cosαµ − sinα)

So, for a ≤ a0 (hence, with uniform motion too)
β = α+ arctanµ

For a > a0

β = α+ arctan g cosα
g sinα + a

We have solved the problem. However, here is
another solution. This is a beautiful geomet-
ric solution. With uniform movement along the
slopes, the sum of all forces should be zero. Re-
place the forces N⃗ and F⃗fr with their resultant
Q⃗ = N⃗ + F⃗fr (Fig.) and add the forces Q⃗, F⃗ and
mg⃗. They should form a closed triangle. Let us
replace that the direction of force Q⃗ is an angle δ

with a perpendicular to the inclined plane such
that
tan δ =

Ffr
N = µN

N = µ

Thus, when the magnitude and direction of force
F⃗ change, the direction of force Q⃗ remains un-
changed. Therefore, the absolute magnitude of
the force F⃗ will be minimal if it is perpendicular
to the vector Q⃗ (Fig.). (since the magnitude and
direction of the vector mg⃗ are unchanged), the
minimum force will be:
Fmin = mg sinα+mgµ cosα = mg(sinα)

Thus, the value of the minimum force required
to lift the box with acceleration a ≤ a0 is
Fmin = mg(sinα+ µ cosα)

If acceleration a > a0, then for the minimum
force F⃗ directed at an angle β horizontally, we
have:
β = α+ arctan g cosα

g sinα+a

Answer:
(a)

β = α+ arctanµ

2.1.27 1 (a) Let the man not slide

R⃗ = F⃗fr + N⃗

tanφ = µN
N ⇒ φ = arctanµ

T −min if T⃗ ⊥ R⃗ (Because Mg and R fixed in the
direction,see fig.)
Fig.
α = φ

α = arctanµ

(b) Tmin−?{
T cosα = µN

N + T sinα = Mg

T cosα = µ(Mg − T sinα)

T (cosα+ µ sinα) = µMg{
T = µMg

cosα+µ sinα

tanα = µ

(1)1 + tan2 α = cos2 α+sin2 α
cos2 α ⇒ 1√

1+µ2

(2) sinα =
√
1− cos2 α =

√
1− 1

1+µ2 =√
1+µ2−1
1+µ2 = µ√

1+µ2

(3)T = µMg
1+µ2√
1+µ2

= µMg√
1+µ2

(c)Let’s find out at what mass ratio it is possible
to choose the optimal angle α = arctanµ so that
a person does not slide:
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T cosα ≤ µn

T cosα ≤ µ(mg + T sinα)

T (cosα− µ sinα) ≤ µmg ←− (1, 2, 3)

�µM�g√
1+µ2

( 1−µ2√
1+µ2

) ≤�µm�g

m ≥M 1−µ2

1+µ2

2 (a) Consider m < M 1−µ2

1+µ2 in this case, the
person will slide by himself and will not be able
to move the box. Obviously, you need to increase
α in this case, the person will slide by himself
and will not be able to move the box. Obviously,
you need to increase it until the Ffr for the box
becomes the limit. Then the optimal angle will
be when µN = T cosα = µn so N = n:{
Mg + T sinα = mg − T sinα

T cosα = µN

(4)

{
(m−M)g = 2T sinα

T cosα = µMg + µT sinα

(5) T = µMg
cosα−µ sinα −→ (4)

(m−M)g
2 = µMg sinα

cosα−µ sinα = µMg
1

tanα−µ

1
tanα − µ = 2µM+µm−µM

m−M = µ(m+M)
m−M

(6) tanα = m−M
µ(m+M)

α = arctan m−M
µ(m+M)

(7)

cosα = 1√
1+tan2 α(9)

= 1√
1+

(m−M)2

µ2(m+M)2

(8) sinα =
√
1− cosα =

√
1− 1

1+
(m−M)2

µ2(m+M)2

=√
1+

(m−M)2

µ2(m+M)2
−1

1+
(m−M)2

µ2(m+M)2

= (m−M)
µ(m+M) ·

1√
1+

(m−M)2

µ2(m+M)2

(7, 8) −→ (5)

T = µMg

(
1−m−M

m+M√
1+

(m−M)2

µ2(m+M)2

)

= µMg
( 2M
m+M )

√
1 + (m−M)2

µ2(m+M)2 =

= µg
2 (m+M)

√
1 + (m−M)2

µ2(m+M)2 =

= µg
2

√
(m+M)2 + (m−M)2

µ2 =

T = g
2

√
µ2(m+M2) + (m−M)2

Answer:
At m ≥M 1−µ2

1+µ2 :
α = arctanµ;

Tmin = µMg√
1+µ2

At m < mM 1−µ2

1+µ2 :

α = arctan m−M
µ(m+M) ;

T = g
2

√
µ2(m+M)2 + (m−M)2

Note: In many places, this problem is formu-
lated without the question about the angle, but
with the clarification m < M . The answer in
the solutions given turns out to be very often the
same only with our case 2 (see 1, 2, 3).
As we found out, in fact, this solution is suitable
not for m < M , but for m < M 1−µ2

1+µ2 . By the way,
the above links suggest a shorter way to find the
force, since it does not involve finding the opti-
mal angle.
Let’s estimate whether the error is large in the
range M 1−µ2

1+µ2 < m < M .
The red line in the graph below shows the an-
swer specified in Savchenko’s taskbook — this
answer cannot be correct, since there should be
no gap between the blue and red lines. The blue
dotted line for clarity shows the behavior of the
blue function outside the range of its applicabil-
ity, i.e. at
m < M 1−µ2

1+µ2 .

A small gap in the green line shows the accepted
value for m = 70 kg. It can be seen that the
difference between the green curve to the right
of the gap and the blue solid one is not very large.
Answer:
At m ≥M 1−µ2

1+µ2 :
α = arctanµ;

T = µMg√
1+µ2

At m < mM 1−µ2

1+µ2 :

α = arctan m−M
µ(m+M) ;

T = g
2

√
µ2(m+M)2 + (m−M)2

2.1.28 1. The external force when the car is moving is
the friction force F = µmg , therefore, without
taking into account the resistance from the air,
the dynamic equation of motion has the form
ma = µmga = µg 2. The kinematic equations of
motion in this case are as follows{
v = v0 − at

x = v0 − at2

2

t = v0
a = v0

µg

3. When substituting acceleration and time
values into the second equation, we obtain the
equation of the braking distance of the car

x =
v20
µg −

v20
2µg =

v20
2µg

v0 =
√
2µgx
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From here, the speed should be reduced by a fac-
tor of

√
10

Answer:
In
√
10 times.

2.1.29 We find the magnitude of the deceleration
a = −∆v

∆ t = −4 m
s

∆t = ∆v
a

2. The kinematic equations of motion in this
case are as follows

x = v0t− v∆t2

2 =
v20
2a = 50 m

Let’s find the coefficient of friction µ :

ma = µmg

µ = a
g = 0.4

Answer:
µ ≈ 0, 4 and l ≈ 50 m

2.1.30 a) In order for the body to start sliding, the ap-
plied force must exceed the friction force. When
determining the magnitude of the friction force,
it must be taken into account that in accordance
with Newton’s third law, the body acts on the
board, and the board acts on the body, therefore,
a double friction force
Ft = µg(m1 +m2)

Condition for the beginning of movement:

F > µg(m1 +m2)

To determine Let’s use the kinematic equations
of sliding time:

l = at2

2 → t =
√

2L
a

Acceleration a when acting along the board of a
constant force F0, we determine from the equa-
tion of Newton’s second law in projection on the
direction of motion:
F0 − Ft = m1a

a = F0−µg(m1+m2)
m1

Sliding time:

t =
√

2Lm1

F0−µg(m1+m2)

b) Two external forces F0 and a friction force Ffr
act on the body. Let’s write down Newton’s sec-
ond law for a body
m1a1 = F0 − Ffr

Given that
Ffr = µN = µm1g

m1a1 = F0 − µm1g

From where we find a1 as

a1 = F0−µm1g
m1

Meanwhile, only the friction force with the bar
acts on the board from external forces
Then Newton’s second law for the board
m2a2 = µm1g

We expressa2
a2 = µgm1

m2

The answer:
a. F > µ(m2 +m1)g; t =

√
2lm2

F0−µ(m2+m1)g
.

b. a1 = F0 − µm1gm1, a2 = µgm1m2

2.1.31 Renumber the loads as shown in the figure, and
the axis X is directed to the right.
It is clear that then none of the loads can have a
negative acceleration.
Let’s prove that the loads 3 and 4 are moving as
one. To do this, let’s assume the opposite: let the
cargo 3 slides on the load 4. Then a friction force
Ffr = µmg

arises between them, and an elastic force
T > µmg

arises in the thread, while the acceleration of the
load 2 would be directed to the left, which cannot
be. Consequently, the acceleration of loads 2, 3
and 4 are the same.
Let’s denote the acceleration of these loads by
ā1 = ā2, and the cargo is accelerated 1 through
ā1.
Now let’s consider two cases.
Case 1. Let the loads 1 and 2 they are in relative
rest and ā1 = ā2.
Let’s denote the modulus of the friction force at
rest between them by F1-the modulus of the fric-
tion force between the weights 3 and 4 through
F2 and the modulus of the elastic force of the
thread through T .
Then: for cargo 1

F − F1 = Ma1

for cargo 2

F1 − T = ma2

for cargo 3

T − F2 = ma2

for cargo 4

F2 = Ma2

Solving this system of equations, we get:
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F1 = 2m+M
2(M+m)F, a1 = a2 = F

2(M+m)

The same result can be obtained in another way.
Since the friction between all surfaces is a rest
friction, the cargo system moves as one body
with mass M = 2(M +m).
Therefore,
F̄ = mā1, ā1 = ā2 = F

2(M+m)

Case 2.
Let the cargo 2 slides the load 1. Then on the
cargo 1 the friction force
F ′
fr = µmg

acts and this load receives acceleration a1 =
F−µmg

m .
Cargo system 2,3 and 4 moves as a single body
whose mass M0 = 2m+M with acceleration
a2 = µmg

2m+M

The first case is realized if
F ≥ 2µm(m+M)g

2m+M

Answer:
At F ≤ 2µm1g(m1+m2)

m2+2m1
≡ F0 we obtain a1left =

a1right = a2right =
F

2(m1+m2)
;

At F ≥ F0 we obtain a2right =
F−µm1g

m2
, a1left =

a1right = a2left =
µm1g

m2+2m1
.

2.1.32 The appearance of the action on the wedge from
the chalk is due to the accelerated movement of
the body along the wedge
Motion becomes possible under the condition
mg sinα ≥ µmg cosα

otherwise the body will rest and acceleration
will not occur.
Using the principles of liberability, let’s imagine
the body as a free material particle under the
action of a system of forces mg;Ffr

The equation of Newton’s second law in projec-
tion on the direction of motion of the body is rep-
resented as follows:
max = mg sinα− µmg cosα

ax = g sinα− µg cosα

The force acting on the wedge and the vertical
wall
F = mg cosα(sinα− µ cosα)

The answer:
F = mg cosα(sinα− µ cosα) at µ ≤ tanα

F = 0 at µ ≥ tanα

2.1.33 Two forces act on a falling drop: the constant
force of gravity, which accelerates the movement
of the drop, and the force of air resistance, which
slows down its movement and increases with in-
creasing drop velocity. The force of air resistance
increases until it becomes equal to gravity. Then
the speed change stops, and the drops fall at a
constant speed.
As the size of the droplet increases, gravity in-
creases in proportion to the volume, i.e. propor-
tional to the third power of the radius, and the
resistance force increases in proportion to the
section of the droplet, i.e. proportional to the
square of the radius. Therefore, as the radius
of the drop increases, gravity increases faster
than the force of air resistance, which means
that the constant speed at which the drop falls
to the ground increases as the size of the drop
increases.
α ≈ 0.7 kg

m

2.1.34 In this case, the movement occurs solely due to
the friction force, which, in fact, is the driving
force. If there were no friction force, then the
bike, as well as the car, would not move from its
place. Displacement with acceleration becomes
possible when the projection of the friction force
on the horizontal axis exceeds the modulus of
the resistance force from the air
µmg ≥ f

When moving without acceleration, at a con-
stant speed, the latter inequality turns into
equality
µmg = f

µmg = αv2

α = µmg
v2 ≈ 0.7 kg

m

Answer:
α ≈ 0.7 kg

m

2.1.35 Five forces act on the ball (see Fig.): gravity
F⃗g = Mg⃗, buoyant force F⃗ , air resistance force F⃗r
, Earth reaction force N⃗ and friction force from
the Earth F⃗fr.
Denote by v⃗′ the velocity of the ball relative to
the Earth. Then
F⃗r = −α(v⃗′ − u⃗)

From the condition that the balloon moves uni-
formly in the horizontal direction, it follows
|F⃗r| − |F⃗fr| = 0

|F⃗ |+ |N⃗ | −M |⃗g| = 0

In addition,

13



|F⃗fr| = µ|N⃗ |
Taking into account that
|F⃗r| = −α(|v⃗′| − |u⃗|)
from the last three equations we obtain
|v⃗′| = |u⃗| − µ

α (M |⃗g| − |F⃗ |)
Answer:
v = u

√
(µα )(mg − F ) at αu2 ≥ µ(mg − F )

otherwise v = 0

2.1.36 The equation of Newton’s second law for the di-
rection of motion:
ma = Fr
Fr
m = dvx

dt

The time derivative of velocity
dvx
dt = d

dt (v0 − βx)

dvx
dt = dv0

dt − β dxdt = −βt
the minus sign indicates that the acceleration
vector is directed in the direction opposite to the
velocity vector. Combining the equations, we ob-
tain the value of the resistance force as a func-
tion of velocity

F = βmv

Answer: F = βmv

2.1.37 Two forces act on a falling drop: the constant
force of gravity, which accelerates the movement
of the drop, and the force of air resistance, which
slows down its movement and increases with in-
creasing drop velocity. The force of air resistance
increases until it becomes equal to gravity. Then
the speed change stops, and the drops fall at a
constant speed.
Let’s write the equation after a long period of
time:
mg = Ap0r

2v2(1)

Find m through volume V :
m = pV = 4

3ρπr
3

And substitute in (1):
4
3ρπr

3g = Ap0r
2v2

Hence:

v =
√

4
3ρπrg ·

1
Ap0
≈ 5.5 m

s (2)

Of(2), the greater the r, the greater the V. This
means that large drops fall to the ground at a
higher speed
Answer:
Large; v ≈ 5.5 m

s

2.1.38 Two forces act on a falling drop: the constant
force of gravity, which accelerates the movement
of the drop, and the force of air resistance, which
slows down its movement and increases with in-
creasing drop velocity. The force of air resistance
increases until it becomes equal to gravity. Then
the speed change stops, and the drops fall at a
constant speed.
Let’s write down the equation after a long period
of time:
mg = γrv(1)

Find m through volume V :
m = pV = 4

3ρπr
3

And substitute in (1):
43ρπr3g = γrv

Hence:
v = 4

3
ρπg
γ · r

2 = αr2(2)

α = 4
3
ρπg
γ = v

r2 = 108 1
m·s

Substitute and find the answer
v( r2 ) = α r

2

4 = 0.25 m
s

v( r10 ) = α r2

100 = 0.01 m
s

Answer:
v1 ≈ 0.25 m

s ; v2 ≈ 0.01 m
s

2.1.39 This is due to the Reynolds number for a given
situation.
If the Reynolds number is Re < 2000, then the
drag force is proportional to the velocity
If Re > 2000, then the resistance force is propor-
tional to the square of the velocity

2.1.40 1. The acceleration of the washer is determined
by the equation of Newton’s second law:
µmg = ma

a = µg

2. With the width of the conveyor belt d, the
washer will travel an equidistant distance x due
to the movement of the belt. From the similar-
ity of right triangles obtained on the vectors of
given velocities and geometric parameters of the
movement of the washer, we find the ratio:
d
x = v

v0

d
x = v√

v2+u2

d = x v√
v2+u2

3. The distance traveled by the washer we find
x from kinematics:{
v = v0 − at

x = v0t− at2

2
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v = 0→ t = v0
a =

√
v2+u2

µg

x = v2+u2

µg − v2+u2

2µg = v2+u2

2µg

4. Next, substitute the value of x into the equa-
tion for d

d = v
√
v2+u2

2µg

Answer:
d = v

2µg

√
v2 + u2.

2.1.41 1. A translationally moving washer has only the
kinetic energy of translational motion

K1 = mv2

2

the plane motion of the washer, which is a super-
position of translational and rotational move-
ments, is characterized by two components of ki-
netic energy: translational and rotational:

K2 = mv2

2 + Jz
ω2

2

K2 = mv2

2 + mr2

2 ·
ω2

2

K2 = m
2 (v

2 + r2ω2

2 )

K2 = 3
4mv2

K2 > K1

2. The initial kinetic energy of the washers in
both cases will be spent on work against the fric-
tion force
Afr = µmg∆x

3. According to the kinetic energy change theo-
rem:
K2

K1
= ∆x2

∆x1
= 1.5

Answer:
Rotating

2.1.42 The sliding friction force acts along the line of
motion in the opposite direction, its magnitude
is determined only by the coefficient of friction of
the surfaces (i.e., for a given nail, it is condition-
ally constant in magnitude and does not depend
on the method of movement).
If you pull directly, you need to apply a lot of
force along the axis of the nail. And if you ro-
tate, then the vector of the friction force rotates
from the axis of the nail, decomposing into two
perpendicular forces: a small axial and a large
radial. A large radial force is overcome using a
lever (the length of the pliers handles is much
larger than the diameter of the nail). There re-
mains a small axial component, which is easy to
overcome.

2.1.43 v = ωRF√
F 2
fr−F 2

.

2.1.44 Since the speed changes quickly, the body does
not have time to move in the horizontal direction
and moves all the time in the direction v⃗

Since v = const, there is no acceleration in the
direction along the velocity v⃗

mg sinα = µmg
cosα
cosβ

cosβ = tanα
µ

For geometric reasons, the modules of the vec-
tors v⃗ and u⃗ are related by the ratio
v = u

tan β

v = u
tanα
µ√

1− tan2 α
µ2

v = u tanα√
µ2−tan2 α

Answer:
v = u tanα√

µ2−tan2 α

2.1.45 Projecting mg⃗ onto OY :
From the figure, we find the reaction force of the
support:
N = mg cosα

According to the Amonton — Coulomb Law:
Ffr = µN = µmg cosα

Because µ = tanα (by condition):
Ffr = µmg cosα

Ffr = mg · tanα · cosα = mg sinα

F = mg sinα

Redraw in the XY plane. At the initial
moment(φ = 90◦):
At the final moment(φ = 0◦):
Consider an arbitrary moment:
Note that φ varies from 0◦ to 90◦:
Let’s write down Newton’s second law:{
dux
dt = F sinφ

m
duy
dt = F (1−cosφ)

m{
d
dt (u sinφ) =

F sinφ
m

d
dt (u cosφ) =

F (1−cosφ)
m

Solve the system of differential equations:{
dφ
dt = F sinφ

mu (a)
du
dt = F (1−cosφ)

m (b)

Divide (b) by (a):
du
dφ = u 1−cosφ

sinφ
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du
u = 1−cosφ

sinφ dφ

du
u = tan(φ2 )dφ

Integrate both parts of the equation:∫
du
u =

∫
tan(φ2 )dφ(c)∫

du
u = ln|u|(d)∫
tan(φ2 )dφ = −2ln(cos(x2 ))(e)

Substitute (e) and (d) in (c):
ln(v) + C = ln(sin(φ))− (ln(sin(φ2 )− cos(φ2 )))(e)

vx = v
2

Answer:
v
2

2.1.46 1. Since bodies of the same mass move down
the plane with a stretched thread, the upper
body will have a rough surface. Bodies with a
stretched thread will have the same accelera-
tions.
2. Write down the equations of New-
ton’s second law in projection to the di-
rection of motion for each body separately:{
m1g sinα− T = m1a1

m1g sinα+ T − Ft = m2a2

a1 = a2

m1 = m2

mg sinα+ T − Ffr = mg sinα− T

Ffr = 2T

Answer:
F = 2T

2.1.47 A body of mass m3 moves with the acceleration
of the center of mass of the system
Considering the whole system (without taking
into account internal forces)

a3 = F
M+2m

In this case, a force equivalent to the double
thread tension force 2T
2T = Ma3

T = F M
2(M+2m)

acts on the body m3.
Two forces T⃗ and F⃗ act on the body m1

Newton’s second law for the first body is written
as
F − T = ma1

a1 = F (M+4m)
2m(M+2m)

Similarly, only T⃗

m2 = T

a2 = FM
2m(M+2m)

applies to the second body m2

The answer:
Accelerations of weights 1− 3:
a1 = F (M+4m)

2m(M+2m)

a2 = FM
2m(M+2m)

a3 = F
M+2m

2.1.48 Let’s consider a small displacement over time dt
from the point of view of kinematics:
For geometric reasons:
dy = dx · cotβ
we differentiate both parts of the expression
twice:
dy
d2t =

dx
d2t · cotβ

a1 = a2 · tanβ(1)
Because the author did not say anything about
friction, example Ffr = 0 Next, we write down
Newton’s law 2 for a bar m1 on the OY axis:
m1a1 = N1 cosβ

N1 = m1a1 cosβ(a)

Similarly for m2:
m2a2 = m2g − 2N1 sinβ(b)

Substitute (a) in (b):
m2a2 = m2g − 2m1a1 · tanβ
Substituting (1) into (c):
m2a2 = m2g − 2m1a2 · tan2 β
We express a2:

a2 = m2g
m2+2m1 tan2 β (d)

Considering (1), multiply (d) by tanβ:

a1 = m2g tan β
m2+2m1 tan2 β

Answer:
a1 =

m2g tan
α
2

m2+2m1 tan2 α
2

a2 = m2g
m2+2m1 tan2 α

2

2.1.49 Let’s apply Newton’s second law:
OX : T − T sinα = m0a0x

T sinα = ma1x

OY : N −mg − T cosα = m0a0y = 0

T cosα−mg = ma1y

tanα = x0−x1

y0−y1

Considering α = const
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d
dt (tanα) =

(
dx0
dt − dx1

dt )(y0−y1)−(
dy0
dt − dy1

dt )(x0−x1)

(y0−y1)2 =
0
d
dt ((

dx0
dt −

dx1
dt )(y0−y1)) =

d
dt ((

dy0
dt −

dy1
dt )(x0−x1))

(d
2x0

dt2 −
d2x1

dt2 )(y0 − y1) + (dx0

dt −
dx1

dt )(
dy0
dt −

dy1
dt ) =

(d
2y0
dt2 −

d2y1
dt2 )(x0 − x1) + (dy0dt −

dy1
dt ) · (

dx0

dt −
dx1

dt )

(a0x − a1x)(y0 − y1) = (a0y − a1y)(x0 − x1)

tanα(a0y − a1y) = a0x − a1x

Of (1)
a0y = 0

− tanαa1y = a0x − a1x

Rope length:
L = xw − x0 +

y0−y1
cosα

Because the thread is inextensible
d2L
dt2 = −d

2x0

dt2 + 1
cosα (

d2y0
dt2 −

d2y1
dt2 ) = 0

(d
2x0

dt2 = a0x,
d2y0
dt2 = a0y,

d2y1
dt2 = a1y)

a0x · cosα = a0y − a1y

From (1) : a0y = 0

a0x cosα = −a1y
Dividing the equations from (1):
T sinα
T cosα = ma1x

m(g+a1y)
−→ tanα(g + a1y) = a1x

tanαa1y = a1x − g tanα

and using (4)

a0x = g tanα

Dividing the equations from (1):
T (1−sinα)
T cosα = M

m ·
a0x
g+a1y

Note that:
a1y = −g sinα
1−sinα
cosα

M
m = g tanα

g−g sinα −→ m = M sinα
(1−sinα)2

m = M sinα
(1−sinα)2

Answer:
a = g tanα

m = m0 sinα
(1−sinα)2

2.1.50 Let’s divide the acceleration of the bar a⃗2 into
normal a⃗n and tangential a⃗τ components
From the figure:
an = a2 · sinβ
aτ = a2 · cosβ
an = aτ · tanβ(0)
Consider a small change in the coordinate of
the wedge and the bar on it in a small inter-
val dt: The wedge moved by dx1 Meanwhile, the
bar in the frame of reference associated with the

wedge, the bar moved along the OX axis by dx,
and along the OY —by dy

Relative to the starting point, in the direction of
the Observer, the bar has shifted by
OX : dx = dx0 + dx1

OY : dy = dy0

Because the bar does not come off,
dy = dx · tanα(a)
Let ’s iterate twice both parts of the expression
(a):
dy
d2t =

dx
d2t · tanα

an = (aτ + a1) · tanα(1)!
Let ’s write down Newton ’s second law for a bar
on the axis:
OX : maτ = N sinα(2)

OY : man = mg −N cosα(3)

According to Newton ’s third law , the pressure
force N⃗ ′ exerted by the bar on the wedge is equal
in modulus and opposite in direction to the force
of the normal reaction of the support N⃗ :
N⃗ ′ = −N⃗
Newton’s second law for a wedge on the OX axis:
Ma1 = N sinα(4)

Let’s compose and solve a system of equations
(0), (1), (2), (3) and (4) with respect to M :

an = aτ · tanβ
an = (aτ + a1) · tanβ
maτ = N sinα

man = mg −N cosα

Ma1 = N sinα
aτ · tanβ = (aτ + a1) · tanα
maτ = N sinα

man = mg −N cosα

Ma1 = N sinα

M = maτ · 1
a1

aτ (tanβ − tanα) = a1 tanα
aτ
a1

= tanα
tan β−tanα

M = maτ
a1

M = m tanα
(tan β−tanα) .

Answer:
M = m tanα

(tan β−tanα) .

2.1.51 The movement of the plate is complex, consists
of horizontal (due to the movement of the rollers)
and at an angle to the horizon, and is progres-
sive. Let’s set up our forces. The vectors in blue
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are the forces acting on the rink (N1 is the force
from the plate to the rink, it is equal to and op-
posite to the force from the rink to the plate, Ffr
is the friction force acting on the rink (under its
action the rink rotates), and the reaction force of
the support R at point P ).
Similar forces act on a skating rink with a
smaller radius. The red vectors indicate the
forces acting on the plate (N is the total reaction
force of the supports, mg - gravity, Ffr - friction
force from the rollers on the plate).
Let’s choose the Ox axis in the direction of the
plate speed. The velocity itself is the instanta-
neous velocity of the point of contact between the
plate and the roller, and the point P is the in-
stantaneous center of velocities, and v is perpen-
dicular to PC(instantaneous radius of rotation).
Let’s write down the equation of motion of the
plate in projections on the Ox axis
ma = mg sin α

2 +N sin α
2 − Ffr cos

α
2 (1)

There are three unknowns in this equation.
More equations need to be drawn up. Let’s write
down the equation of rotational motion for the
roller. This equation has the form
Iε = ΣM

The product of the moment of inertia of a body by
angular acceleration is equal to the sum of the
moments of forces acting on the body. Let’s find
the shoulders of the forces acting on the roller
PC

2r cos α2

The shoulder of the friction force is
2r cos2 α2 and the shoulder of force N is 2r cos α2 ·
sin α

2

The shoulder of force R is zero.
Let’s write down the equation of rotational mo-
tion for the roller (since the mass of the roller is
zero according to the condition of the problem,
then I = 0):
0 = −Ffr2r cos2 α2 +Nr sinα(2)

From where
Ffr = N tan α

2

substituting this value into the equation of mo-
tion (1), we get
ma = mg sin α

2 ,
i.e. the desired acceleration is equal to
a = g sin α

2

Answer:
a = g sin α

2

2.1.52 Since the system is closed, there are no external
forces
Accordingly, the center of mass of the system has
no acceleration
aC = 0(1)

Considering that a⃗1 and a⃗2 are directed in dif-
ferent directions, the acceleration of the center
of mass of the system is described by the expres-
sion
aC = m1a1−m2a2

m1+m2

Considering the ratio (1)

m1a1 = m2a2

From where, the mass of the second star
m2 = m1

a1
a2

Answer:
m2 = m1

a1
a2

2.1.53 Let’s make the drawing larger. Let’s set up our
forces. At the initial moment, the dumbbell does
not move, so we write down Newton’s second law,
taking into account that the acceleration is zero.
We write down the equilibrium condition on the
axis:
0 = N1 −mg − T cosα

0 = N2 −mg cos(π − 2α) + T cosα.

It is not difficult to guess that the design was
carried out in the directions N1 and N2. From
this system we find
N1 −N2 ≥ 2mg

N1 +N2 ≥ mg −mg cos(π − 2α)

because cos(π − 2α) = cos2 α, then
N1 +N2 = mg −mg cos2 α

By the condition of the problem α = 90◦

With this in mind, we finally get
N1 = 3mg

N2 = −mg2
The sign ”−” means that the force is directed in
the opposite direction, as indicated in the figure.
Answer:
For the upper ball N1 = mg

2 ,
for the lower ball N2 = 3mg

2

2.1.54 1. The stationary circular orbit of an electron,
which is a negatively charged particle with a rest
mass me, will take place if the Coulomb force of
attraction and the inertia force
Fk = Fi
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are equal in modulus
2. The inertia force is directly proportional to
the square of the linear velocity of the particle
and inversely proportional to the distance to the
axis of rotation
Fi =

mev
2

r

Thus, the Coulomb force in this case is inversely
proportional to the distance between the elec-
tron and the charged filament.
3. As the charge of the filament increases,

Fk > mev
2

r

to restore equilibrium, the radius of the orbit
should decrease, while decreasing the charge, on
the contrary, the radius will increase.
Answer: F = mev

2

r .
Close to parabolas, touching circle from the in-
side;
from the outside.

2.1.55 Because the thread does not sag
T1 = T2 = T

As soon as the nail appears, both bodies con-
tinue to move at a speed of v along the new tra-
jectory r = l

2

T = man

T = mv2
l
2

We obtain the tension force of the thread imme-
diately after that

T = 2mv2

l

Answer:
T = 2mv2

l

2.1.56 1. In the case of a weightless and inextensible
thread, its tension is defined as:
T = Fi =

mv2

L = mω2L
2L

T = mω2L

2. Select a given section of the rope and deter-
mine the mass of its part length (L− x)
mx = mL−x

L

3. Determine the distance from the axis of rota-
tion Oz to the center of mass of the rope segment
rx = L− L−x

2

rx = L+x
2

4. The tension of the rope in the section x will
be due to the rotating mass M and the mass of
the rope mx

T = Mω2L+ mω2(L2−x2)
2L

Answer:
T = Mω2l,
Tx = Mω2l + mω2(l2−x2)

(2l)

2.1.57 Projecting the tension force of the thread T , we
write down Newton’s second law on the vertical
and horizontal axes:
T sinα = mac

mg − T cosα = 0

Hence
mg tanα = mac(1)

We find the centripetal acceleration through the
angular velocity of rotation ω

ac = ω2r = ω2R sinα

We substitute in (1)

g = ω2R cosα

From where we find α

cosα = gω2R

Given the area of definition of the cosine
−1 ≤ cosα ≤ 1

At g > ω2R, the angular velocity will no longer
be enough to lift the body to some angle and
the body will take a stable position at the low-
est point of its trajectory corresponding to
α = 0

Answer:
cosα = g

(ω2R) at g
(ω2R) < 1

α = 0 at g
(ω2R) > 1.

2.1.58 Projecting the tension force of the thread T for
the lower ball, we write down Newton’s second
law on the vertical and horizontal axes:
Tsinβ = mac

mg − T cosβ = 0

Hence
mg tanα = mac(1)

We find the centripetal acceleration through the
angular velocity of rotation ω

ac = ω2r = ω2(l1 + l2)

ac = ω2l(sinα+ sinβ)

We substitute in (1)

g tanα = ω2l(sinα+ sinβ)

From where we find ω

ω =
√

g tan β
l(sin β+sinα) .
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The answer:
ω =

√
g tan β

l(sin β+sinα) .

2.1.59 We write down Newton’s second law for the load,
taking into account the elastic force of the spring
Fel

mac = Fel = k∆x

We express ∆x in terms of the length of the un-
deformed spring l

mac = Fel = k(R− l)(1)

We find the centripetal acceleration through the
angular velocity of rotation ω

ac = ω2R

ac = ω2(l +∆x)

Substitute in (1)
k
m (R− l) = ω2R

From where we find l

l = R(1− mω2

k )

The answer:
l = (1− mω2

k )R

2.1.60 Consider a small piece of harness of length dl =
2αR

Tension forces act on a piece of the harness
T1 = T2 = 2kα(R−R0),

taking into account sinα ≈ α at small angles
Tn = 2Tα

Due to the uniformity of the harness, a piece of
length dl = 2αR will have a mass
dm = mα

π

At the same time it will be affected by centripetal
acceleration
a = ω2R

We write Newton’s second law as
dma = Tn

m 1
πω

2R = 4k(R−R0)α

From where we find R

R = R0

1−mω2

4π2k

Analyzing the resulting expression,the result-
ing elastic force will act at R < R0T⃗n aimed
at stretching, which will not be compensated
by centrifugal force. Thus, the tourniquet will
stretch endlessly and eventually break.
Answer:
R = R0

(1−mω2

4π2k
)

at ω < 2π
√

k
m

at ω > 2π
√

k
m the ring stretches indefinitely.

2.1.61 To begin with, I advise you to familiarize your-
self with solution 2.1.60

Consider a small piece of harness of length dl =
2αR

A piece of the harness is affected by the friction
force F⃗fr

Ffr = µN

Due to the uniformity of the harness, a piece of
length dl = 2αR will have a mass
dm = mα

π

While centripetal acceleration
a = ω2R

will act on it
Newton’s second law is written as
dma = N

mα
πω

2R = N

Where does the friction force
Ffr = µmα

πω
2R

come from Considering sinα ≈ α at small an-
gles, we write the equilibrium condition on the
vertical axis
2Tα+ Ffr = dmg

2Tα+ µmα
πω

2R = mgαπ

From where we find µ

µ = mg
(2πT−mω2R)

Answer:
µ = mg

(2πT−mω2R)

2.1.62 α = arctan v2

gR

2.1.63 Due to the fact that the angular velocity varies,
in addition to the centripetal velocity an, there
will also be a tangential acceleration aτ

According to the Pythagorean theorem, we find
the total acceleration a⃗

a =
√
a2n + a2τ

a =
√
(ω2R)2 + (εR)2

a = εR
√
1 + ε2R4

Newton’s second law is written as
ma = Ffr

ma = µmg

εR
√
1 + ε2R4 = µg

This equality holds for

t =
√

µ2g2

β4R2 − 1
β2

From where we find ω
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ω = 4

√
µ2g2

R2 − ε2)

In this case, if ε > µg
R , then aτ will be so large

that the force of friction at rest will instantly
turn into the force of sliding friction, even when
an = 0

Answer:
ω1 = 0 at ε > µg

R

ω1 = ( µ2g2

R2−ε2 )
1
4 at ε < µg

R

2.1.64 Let’s depict the forces acting on the motorcy-
cle (see Figure above), and write down Newton’s
second law
N⃗ +mg⃗ + F⃗fr = ma⃗.

In the projection on the axis:
Ox : Ffr = ma;

Oy : N −mg = 0.

Considering that when moving along a circle a =
v2

R ,the friction force is equal to Ffr = µN , we
get that the maximum speed of a motorcyclist is
equal to
v =
√
µgR

When turning, the motorcyclist deviates to the
center of the circle by a certain angle (see Figure
below). Then according to Newton ’s second law
N⃗ +mg⃗ = ma⃗

Ox : N sinβ = ma;

Oy : N cosβ = mg.

Where from
tanβ = a

g = µg
g

β = arctanµ

Consider the movement of a cyclist along a hor-
izontal drift (Fig.).
The cyclist is affected by: gravity mg⃗ and the
normal component of the reaction force of the
support N⃗ .
The centripetal acceleration of a cyclist can only
be reported here by the frictional force of rest, di-
rected along the radius of the circle to the center
of O and arising when the cyclist leans towards
the center of the circle.
The resultant of the forces N⃗ and F⃗fr → F =

F⃗fr + N⃗ passes through the center of gravity of
the cyclist, and otherwise there would be a tip-
ping moment of forces.
According to Newton’s second law, for projection
into the radial direction X Ffr = man = m v2

R ,
where v is the speed of the cyclist.

Since the resting friction force Ffr ≤ µN = µmg,
we obtain the inequality
m v2

R ≤ µmg

v2 ≤ µgR→ v ≤
√
µgR

the maximum value of the velocity on the hori-
zontal track v1 =

√
µgR.

Consider the movement of a cyclist on an in-
clined track. The forces acting on it are shown in
Fig. (F⃗ is the resultant of the reaction forces of
the support N⃗ and the friction forces of rest F⃗fr).
According to Newton’s second law for projections
on the X and Y axes:
on the Y -axis N cosα− Ffr sinα−mg = 0(1)

along the X-axis N sinα + Ffr cosα = man(2),

where an = v2

R

(v is the speed of movement on an inclined
track). Let’s rewrite the system in the form:{
N cosα− Ffr sinα = mg, (1′)

N sinα+ Ffr cosα = m v2

R (2′).

Let us express from this system N and Ffr. To
do this, multiply the equation (1′) by cosα, and
the equation (2′) - on sinα:{
N cos2 α− Ffr sinα = mg cosα,

N sin2 α+ Ffr cosα sinα = mv2

R sinα.

After addition, we get
N(cos2 α+ sin2 α) = mg cosα+mv2

R

N = m(g cosα+ v2

R )

Multiply (1′) by sinα, and (2′)- on cosα, then{
N cos2 α− Ffr sinα = mg cosα,

N sin2 α+ Ffr cosα sinα = mv2

R sinα.

After calculations, we find
Ffr = (v

2

R − g sinα)

Since Ffr is the friction force at rest, then

Ffr ≤ µN → m( v
2

R cosα − g sinα) ≤ µm(g cosα +
v2

R sinα)

v2

R (cosα− µ sinα) ≤ g(µ cosα+ sinα)

Divide both parts into cosα(from the condition
cosα > 0).
v2

R (1− µtgα)(µ+ tgα)

If (1 − µtgα) > 0, then v2 ≤ gR(µ+tgα)
1−µtgα , or v ≤√

gR(µ+tgα)
1−µtgα

This means that the maximum speed when moving
along an inclined track is

v2 =
√

gR(µ+tgα)
1−µtgα
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The ratio
v2
v1

=
√

µ+tgα
µ(1−tgα)

Answer:
v =
√
µgR, β = arctanµ, uv =

√
µ+tanα

µ(1−µ tanα) .

2.1.65 The skater is informed by the centripetal accelera-
tion of the friction force on the ice
F⃗fr = µN⃗

where N⃗ is the force of the normal reaction of the ice
(Fig. a).
Since the skater does not move in the vertical direc-
tion, the force N⃗ is equal in modulus to the force of
gravity acting on the skater Mg⃗

Therefore,
Ffr = µmg

mv2

R = µmg

Hence
v =
√
µgR

When making a turn, the skater passes the distance
S = πR

during the time

t = s
v = π

√
Rµ
g (1)

The larger the radius of the circle along which the
skater moves, the greater It’s time.
Although the maximum speed of a skater increases
with an increase in the turning radius, the distance
traveled by him increases even more: while the speed
is proportional to

√
R, the distance traveled is pro-

portional to R. That is why the skater tries to pass
the turn as close as possible to the inner edge.

2.1.66 vmin =
√

gR sinα(tanα+µ)
µ tanα−1

2.1.67 According to Newton’s second law, we have
mω2r = N +mg sinα

where N is the force of normal pressure.
In order to avoid slippage, the condition
mg cosα ≤ k(mω2r −mg sinα)

must be fulfilled
from where
ω2 ≥ g

r (cosα+ sinα) at k = l.
Thus,

ω =

√
g
√
2

R

Answer:

ω =

√
g
√
2

R

2.2 Impulse. Center of mass

2.2.1 u = 5v
2 .

2.2.2 Ffr =
F
3

2.2.3 t =
2p sin(α2 )

F

at an angle β = (π+α)
2 to the initial velocity.

2.2.4 m = F∆t2

(16L) . Using the experimental data, plot
the dependence of the span time on the source
voltage.

2.2.5 t = mv(sinα−µ cosα)
[µ(m+M)g] at tanα > µ

at tanα ≤ µ the box will not move.

2.2.6

2.2.7 m1

m2
= (u2−u1)

(v1−v2) . It is necessary to take into ac-
count the change in the velocity of the Earth.

2.2.8

2.2.9 u1 = F0t0
m1

;u2 = v − F0t0
m2

.

2.2.10 m = m0

3 .

2.2.11 u1 = u2 = 0, 2v.

2.2.12 At a distance of 4L horizontally from the gun

2.2.13 S
L = 35

36

2.2.14 w = m1

m2

√
u2 + v2.

2.2.15 p =
√
p21 + 2p1p2 cosα+ p22.

2.2.16 V =

√
m2

1v
2
1+m

2
2v

2
2+m

3
3v

2
3

m1+m2+m3

2.2.17 l1 = lm2

(m1+m2)
, l2 = lm1

(m1+m2)

2.2.18 The trajectory of the particle is obtained by
stretching with similarity coefficient 2 the tra-
jectory of a particle whose mass is 2m.

2.2.19 Circles whose center lies in the center of mass of
the system station - astronaut. Radii of circles:
R1 = Rm2

(m1+m2)
, R2 = Rm1

(m1+m2)
.

2.2.20 On the bisector of the angle at a distance l =
L
√
2

4 from the vertex, where L is the length of
half of the rod; at the point of intersection of the
medians; on the line connecting the centers of
the disk and the hole, at a distance l = dr2

(R2−r2)
from the center of the disk.

2.2.21 u = ρSvl
m .

2.2.22 v = uV (ρ0−ρ)
(ρV+ρ0V0)

.
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2.2.23 T = 2π
√

2R
3g

2.2.24 F = m1m2v
2

(m1+m2)l

2.2.25 ω =
√

m2T1+m1T2

Lm1m2
;m = 2m1m2(T1−T2)

m1T2−m2T

2.2.26 T12 = m1m2

m1+m2+m3
lω2 for the thread connecting

m1 and m2; the expressions for the other threads
are similar.

2.2.27 F = mg − ρV a

2.2.28 F = SρLa

2.2.29 At a speed of u
4 upwards.

2.2.30 n = (m2gtgα)
(m1v)

.

2.2.31 F = Nmg. Increasing.

2.2.32 H = h (M+Nm)2

Nm(Nm+2M) .

2.2.33 F = mv2

R ; p = F
S = Nmv2

3

2.2.34 ∆vN = ( M
M+m )2N (v2 − v1).

2.2.35 F = ρSu2.

2.2.36 µ = Mg
u ;µ′ = M(g+a)

u

2.2.37 F = µ2(u− v) + µ1u.

2.2.38 v = ρSu
(ρS+k)

2.2.39 v =
√

F (ρ−ρ0)
(πr2ρρ0)

.

2.2.40 See Fig.

2.2.41 F = 3mg(1− x
l ).

2.2.42 F = m(v2+gl)
l .

2.2.43 v =
√
gh

2.2.44 N = 2(F − ρv2) cos α2

at v ≥ F
ρ

2.2.45 K = kn.

2.2.46 u = v lnn

2.2.47 m ≈ 5.5 · 105 kg; 7.4 times less.

2.3 Kinetic energy. Work. Potential
energy

2.3.1 At m = 2Fl
v2

2.3.2 F =
m(v22−v

2
1)

(2l) ; if F > 0, the direction of the force
coincides with the direction of the particles, and
if F < 0, the direction of this force is opposite.

2.3.3 F ≈ 2.5 · 106 H

2.3.4

2.3.5 v =
√

F0(l1+2l2+l3)
m .

2.3.6 v >
√
2µgL.

2.3.7 A ≈ 0.8J

2.3.8 x = v
√

m
k ;x

′ =
√
x2
0 +

mv2

k

2.3.9 Ek = F 2

(8k) .

2.3.10 At the greatest force we can develop, the bow
should stretch as far as the arm span allows. For
a tighter bow, as for a less tight bow, the stored
elastic energy will be less.

2.3.11 K = mgl cosα, K ′ = mgl(cosα− µ sinα)

2.3.12 h = v2

[2g(1−µ cotα) .

2.3.13 v =
√

4gh− 2A
m .

2.3.14 Amin = mgl.

2.3.15 Amin = mgl
2

2.3.16 v = r
√

g
l

2.3.17 n = mv2

(4πFR cosα) .

2.3.18 v = 2
√
(l − h)Tm.

2.3.19 Moving through the pipe.

2.3.20 sinβ = v sinα√
v2+2gh

.

2.3.21 sinβ = sinα√
1−2F l

mv2

at Fl > mv2

2 cos2 α

2.3.22 At the bottom. In the upper one. At angle α =
arctg 1√

3
between the thread and the vertical

2.3.23 x = lT−3mg
T−mg .

2.3.24 F = 5mg for the rod; F = 6mg for the thread.

2.3.25 Lmin = R
2(tanα−µ) .

2.3.26 h = 2R
3
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2.3.27 h = 2, 5R.

2.3.28 F = 2πRmg
4π2R2+h2

√
4π2R2 + h2 + 16π2H2

2.3.29 F = mg(1− 1
k2 ).

2.3.30 F = mg cosα(3 sinα− 2) at sinα ≥ 2
3

F = 0 at sinα ≤ 2
3 .

2.3.31 v =
√
2gl.

2.3.32 A = 2πµmv2

2.3.33 K = K−2µα
0e .

2.3.34

2.3.35 F = l
(mα2)

2.3.36 A = x2

(2mα2) −
px

(αm) .

2.3.37 U = F0x
2

(2x0)
at |x| ≤ x0

U = F0(|x| − x0

2 ) at |x| > x0

Movement area: |x| ≤
√

2Kx0

F0
at K ≤ F0x0

2

|x| ≤ ( KF0
+ x0

2 ) at K > F0x0

2 .

2.3.38 K = kqQ
r2 ; at qQ > 0 - repulsion,

at qQ < 0 - attraction

2.3.39 No

2.3.40 At E > 0, the region of motion

r ≥ lVE (−1 +
√
1 + E

V )

at E < 0, r is between r1,2 = lVE (−1±
√
1 + E

V ).

2.3.41 h = 2mg
k

2.3.42 h = 2mg
k ; v = g

√
m
k

2.3.43 H1 = 3h
2 ;H2 = 4h

3 .

2.3.44 k = mgx0

2(
√
l2+x2

0−l)2

2.3.45 F = mg(1 +
√

1 + 2k(h−l)
(mg) ).

2.3.46 F = (m1 +m2)g.

2.3.47 x = (mk )(g − a);xmax = (mk )(g +
√
2ga− a2).

2.3.48 F = µg(m1 +
m2

2 )

2.3.49 m = µum0

2 .

2.4 System energy. Energy transfer.
Power

2.4.1 In a moving frame of reference, the force of ten-
sion performs work. No

2.4.2 K = m1v
2

2 − Fl.

2.4.3 K1 = k(x1+x2)x1

2

K2 = k(x1+x2)x2

2 .

2.4.4 A1 = mu2

2 −
mv2

2 ;A2 = −mu2

2.4.5 A = 2Fr(2 sin α
2 − 1), α = 60◦.

2.4.6 The sum of the works of the mutual forces de-
pends only on the change in the distance be-
tween the particles.

2.4.7 x = v
√

m
(3k) .

2.4.8 v′ =
√
2v.

2.4.9 v =
√
gl.

2.4.10 xmax = 4l
3

2.4.11 vm = tanα
√

2Mgh
M+m tan2 α

vM =
√

2Mgh
M+m tan2 α + 2g(H − h).

2.4.12 v = ( 43 )
√

gR
3 .

2.4.13 F = 7mg
9 .

2.4.14 h ≈ 0.25m

2.4.15 K ′ = 0.01K.

2.4.16 vx = (l − l0)
√

k
(2m) cosα

x = (l − l0) sinα

2.4.17 a. In translational motion. The acceleration of
the center of mass and the total external force
for the system is related in the same way as for
an individual particle.

2.4.18 µ = v2

(2gl) .

2.4.19 v =
√

2h(g − T
m );K = mgh,Erot = Th.

2.4.20 x = Lm2

(M2−m2)

2.4.21 lmin = l0; lmax = l0 +
F
k

2.4.22 x = µmg cosα
k at µ ≤ tanα

x = µmg cosα
2k [1 +

√
1− 2(1− tanα

µ )2] at
tanα ≤ µ ≤ 3 tanα

x = 2mg sinα
k at µ ≥ 3 tanα
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2.4.23 The kinetic energy of the particle is

K = m(u⃗+V⃗ )2

2 , where u⃗ is its velocity relative

to the center of mass and V⃗ is the velocity of
the center of mass. In sum over all particles of
the system, the summands mu⃗V⃗ give zero.

2.4.24 Kmax = F 2

(2k) ;Umax = 2F 2

k ; vrel = F
√

(m1+m2)
(km1m2)

2.4.25 At a velocity of the center of mass equal to zero

2.4.26 ∆W = Fl.

2.4.27 ∆W = F (l − Ft2

2m )

2.4.28 ∆W =
F 2m2

2

[k(m1+m2)2]
, U = ∆W

2

K = Fl + F 2m1m2

[k(m1+m2)2]

2.4.29 A = mu2. Half of the work goes to increase the
internal energy.

2.4.30 ∆W
A = µ

(tanα+µ) .

2.4.31 W = W1 +W2 +
m1m2

2(m1+m2)
(V1 − V2)

2, No.

2.4.32

2.4.33 Q = m( v
2

2 − gh)

2.4.34 Q = m1gh(m1−m2)
(m1+m2)

2.4.35 Q = 2mgR(1−
√
1− l2

(4R2) )
√

1− l2

(4R2) .

2.4.36 E ≈ 200 MJ.

2.4.37 m ≈ 3 kg.

2.4.38 8 times

2.4.39 v = µgt at t ≤ t0 ≡ N
mµ2g2

v =
√

2N
m (t− N

2mµ2g2) at t > t0

2.4.40 N = m0gω(1− ω
ω0

), m = m0

2 .

2.4.41 m = n2m0

(2n1)

2.4.42 v ≈ 20 km
h ; α = arcsin

√
2
4

2.4.43 N = ρS(v − ωR)2ωR.

2.4.44 η = 2v
(v+u) .

2.4.45 N = mgu
2 .

2.5 Collisions

2.5.1 m1

m2
= 1; yes.

2.5.2 α = π
2 .

2.5.3 u1

u = (k−1)
(k+1) ;

u2

u = 2k
(k+1) .

2.5.4 The mass of the neutron is close to the mass of
the deuteron (mn ≈ md

2 ), so the energy loss in
elastic collisions with deuterons is much greater
than collisions with heavy lead nuclei.

2.5.5 m =
√
m1m2.

2.5.6 cosβ = v1v2 cosα

(u1

√
v21+v

2
2−u2

1)

2.5.7 v′1 = 2v − v1; v
′
2 = 2v − v2

2.5.8 After any odd number of collisions the velocities

v′1 = (m1−m2)v1+2m2v2
m1+m2

, v′2 = (m2−m1)v2+2m1v1
m1+m2

After any even - are equal to the initial ones.

2.5.9 v1 = v
√

m2m3

m1(m1+m3)
; v3 = v

√
m2m1

m3(m1+m3)

2.5.10 tanβ = tanαm1+m2

m2−m1
.

2.5.11 d = 2
√
2R.

2.5.12

2.5.13 The two nearest balls obtain velocities v1 =
v cosα and v2 = sinα, directed on mutually per-
pendicular sides of the cell, and the originally
moving ball will stop. These velocities are then
transferred to the next balls in corresponding
rows

2.5.14 t = tn − tn−1 = 2∆t.

2.5.15 t = (2R cosα)
v .

2.5.16 m1

m2
= sin2 (α+β)−sin2 β

sin2 α
;m1 is the mass of an incom-

ing particle, m2 is the mass of a resting particle.

2.5.17 sinα = m2

m1
.

2.5.18 u = 2m1v cosα
(m1+m2)

2.5.19 m2 =
m1(p

2+p20−2pp0 cosα)

(p20−p2)

2.5.20 u =
√
v2 + (v + u0)2

swivel angle φ = π
2 + arctan v

u0+v

2.5.21 v =
√

2gh(1 + m2

m1
).
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2.5.22 v1 = 0; v2 = v at v > v0 ≡
√
2gh(1 + m2

m1
)

v1 = v 2m2

m1+m2
, v2 = vm2−m1

m1+m2 at v < v0

Here v1 is the speed of the slide, v2 is the

velocity of the body.

2.5.23 v1 = m2

m1

√
2gRm1

(m1+m2
), v2 =

√
2gRm1

(m1+m2)

N = m2g(3 +
2m2

m1
)

2.5.24 u = x
√

k(m1+m2)
m1m2

, u1 = m1−m2

m1+m2
x
√

k(m1+m2)
m1m2

u2 = 2m1

m1+m2
x
√
k(m1 +m2)m1m2

then u1 = u, u2 = 0 and so on.

2.5.25 h1max = m2U
m1g(m1+m2)

, h2max = m1U
m2g(m1+m2)

2.5.26 1.5 times.

2.5.27 K = 35.7 keV

2.5.28 Emin = E(1 + me
m ).

2.5.29 Emin ≈ 27.2 eV

2.5.30 v1 =
√

2Em2

m1(m1+m2)
, v2 =

√
2Em1

m2(m1+m2)

2.5.31 E =
p21m

2
2+p

2
2m

2
1−2p1p2m1m2 cosΘ

2m1m2(m1+m2)

2.5.32 E = K sinα1 sinα2

2.5.33 E = 4.1 MeV.

2.5.34 cosα = (p2−2mE)
(p2+2mE) if 2mE < p2

α = π
2 if 2mE > p2

2.5.35 h
h0

=
[
(m1−m2)
(m1+m2)

]2
.

2.5.36 Q
K =

(3−m1
m2

)

4

2.5.37 Q1 = 2
√
Q2m(v − 2

√
Q2

m ).

2.5.38 vn =
√

Fl
m (1 + 1

n ), un =
√

Fl
m(1+ 1

n )

vn →
√

F
lm at n→∞

2.5.39 tanβ = tanα− 2µ with tanα > 2µ

otherwise β = 0

2.6 The force of gravity. Kepler’s laws

2.6.1

2.6.2 a = K
R2 where R is the distance from the planet

to the Sun, K is the constant.

2.6.3 h ≈ 700 km

2.6.4

2.6.5

2.6.6 According to the given data γ = r2a
(2M) ≈ 5 · 10−11

H · m
2

kg2 , which is comparatively close to the re-
sults of exact measurements.

2.6.7 M ≈ 6 · 1024 kg

2.6.8 M ≈ 6 · 1030 kg

2.6.9

2.6.10 0.3 times.

2.6.11 6 times.

2.6.12 R = (γm⊙
ω2 )

1
3

2.6.13 T1 ≈ 0.7 years.

2.6.14 T = 2π
√

R3

γ(m1+m2)
.

2.6.15 m
m⊙

= µ = r3

T 2

2.6.16 ω2 = 3γm
l3

2.6.17 v1 ≈ 7.9 km
s , v2 ≈ 1.7 km

s , T1 = 84 min,
T2 ≈ 105 min.

2.6.18 p = 2m0

√
γm
R sin α

2

2.6.19 F = 3mv2

(4R)

2.6.20 ∆N ≈ 9 · 103 H

2.6.21 a. R ≈ 42 · 103 km. b. The ”figure of eight”,
”touching” the 60th parallels with the point self-
intersection at the equator.

2.6.22 ∆U = γ Mmh
R(R+h) ;

mgh−∆U
∆U = h

R

2.6.23 v = 4.6 km
s

2.6.24 u =
√
v2 − v20

2.6.25 10 times less

2.6.26 v1 ≈ 11.2 km
s , v2 ≈ 2.4 km

s

2.6.27 ∆v = (
√
2− 1)v

2.6.28 h = 59 km.
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2.6.29 ρmax = 3H2

(8πγ) .

2.6.30 v =
√

3γm
R .

2.6.31 v ≈ 42 km
s .

2.6.32 v ≈ 16.7 km
s .

2.6.33 vmin = 29 km
s .

2.6.34 U = −2K

2.6.35

2.6.36 S = ( 12 )vrt sinα

2.6.37 ωp
ωa
≈ 45

2.6.38 ρ = R
√

1 + 2γM
(Rv2) .

2.6.39 V = v( 2γM
rv2−1 ), R = r

2γM

rv2
−1

,

M is the mass of the Earth.

2.6.40 E = γMm
(ra+rp)

2.6.41 R1

R2
= 2u2

v2

2.6.42 dv = γMdφ
(vprp)

. The vector dv is directed to the
center of the planet.

2.6.43 The velocity momentum (vector product of the
velocity on the radius-vector drawn from the
center of the orbit) of the probe is the same as
the station’s velocity momentum.
When the probe and station rotate by the same
angle, the velocity vectors will also change in
the same way. From the constancy of the
probe’s velocity momentum:
up = (v − V sinα)r it follows that
r = p

(1−ε sinα) , where ε = V
u .

At ε < 1 the probe trajectory is an ellipse,
at ε = 1 it is a parabola,
at ε > 1 it is a hyperbola

2.6.44 When V < u, rp = pu
u+V , ra = pu

u−V

αpr = arcsin u
V

2.6.45 This velocity is parallel to the major axis and
perpendicular to vector V , so V0 =

√
u2 − V 2

Since a = 1
2 (ra + rp) =

pu2

u2−V 2 ,

then a = γM
V 2
0

(From the equation u2

p = γM
p2 for

a circular orbit, it follows that pu2 = γM )

Finally, V0 =
√

γM
a

2.6.46 Speed of ”sweeping” the area dS
dt = 1

2bV0 =

1
2b
√

γM
a . (See the solution of the problem 2.6.45.)

The orbital period of the satellite T = 2πab
(bV0)

=

2πa
3
2√

γM
.

One can solve this problem without referring to
the solution of Problem 2.6.45. The radius of
curvature of the orbit at the apex of the major
axis of the ellipse R = a

k2 = b2

a . Therefore v2

R =

v2a
b2 = γMr2 → vr =

√
γMb2

a , dSdt = 1
2vr = 1

2b
√
γMa .

Satellite orbital period T = 2π ab
dS
dt

= 2πa
3
2√

γM
..

2.6.47 In 1910.

2.6.48 t = π
√

R
g [

( 1+Rc
R )

2 ]
3
2 .

2.6.49 t ≈ 65 days.

2.6.50 ∆v ≈ 70 m
s .

2.6.51 F =
γMm(R3

2−R
3
1)

(R1+R2)R2
1R

2
2

2.6.52 N = γm2

4r2 −
γmM(3R2r+r3)
R(R2−r2)2 ;R = 3

√
12R0.

2.6.53 σ ≈ 1, 8 · 1012 Pa

2.7 Rotation of a solid

2.7.1 K2

K1
= 32.

2.7.2 K = mR2ω2

2 . The disk has less energy.

2.7.3 M = mR2ω
t ;M = mR2ω2

(4πN) .

2.7.4 t = ωR
(µg) , n = ω2R

(4πµg) .

2.7.5 J = m1r
2
1 +m2r

2
2.

2.7.6 n = ω2R(1+µ2)
[4πgµ(1+µ)] .

2.7.7 n = ω2R(1+µ2)
[8πgµ(1+µ)] .

2.7.8

2.7.9 w = |m1−m2|gR
(J+m1R2+m2R2)

2.7.10 P1 = mg
2 −

Jw
l ;P2 = mg

2 + Jw
l .

2.7.11 a = F
(m1+m2)

;w = F
(m2R)

2.7.12 a = ( 12 )g sinα.Ffr = ( 12 )mg sinα.

2.7.13 T = ( 17 )mg sinα

2.7.14 v =
√

gl(sinα− 2µ cosα).
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2.7.15 a = 2m2g
(2m2+m1)

2.7.16 J = mr2[ gt
2

(2h) − 1]

2.7.17 a1 = g (m1R1−m2R2)R1

J+mR2
1+m2R2

2
, a2 = −g (m1R1−m2R2)R2

J+m1R2
1+m2R2

2
;

T1 = m1g
J+m2R2(R2+R1)
J+m1R2

1+m2R2
2

T2 =

m2g
J+m1R1(R2+R1)
J+m1R2

1+m2R2
2
.

2.7.18 a = g
1+ J

mr2
;T = 1

2
mg

1+mr2

J

.

2.7.19 a = g
2

2.7.20 cosα > r
R .

2.7.21 See Fig. t = ω0R
(2µg) .

Q
E = 1

2 .

2.7.22 t = v0(3µg).
Q
E = 1

3 .

2.7.23 t = v
(µg) .

2.7.24 ω > 3v
R .

2.7.25 ω1 = ω3 = ω
3 ;ω2 = −ω3

2.7.26 α = 60◦. Less.

2.7.27 N = 4m1m2g
(m1+m2)

2.7.28 N = mgl2

(l2+3a2) .

2.7.29 cosα = 2g(m1−m2)
ω2l(m1+m2)

at | 2g(m1−m2)
ω2l(m1+m2)

| < 1; otherwise
α = 0 or π.

2.7.30 ω = J1ω1+J2ω2

J1+J2
. Q = J1J2(ω2−ω1)

2

2(J1+J2)

2.7.31 ω = v
(2R) .

2.7.32 ω′
0 = (3ω1−ω2)

4 ;ω′
2 = (3ω2−ω1)

4 .

2.7.33 u ≈ m2v
m1

;ω = 2m2vh
(m1R2)

2.7.34 ω = 2m2vr
(m1R2+2m2r2)

.

2.7.35 ∆ω = ωmR2

J . It increases by a factor of (1+ mR2

J ).

2.7.36 n = 33
8 h−1

2.7.37 West. Such a wind in the northern hemisphere
is called a northeasterly trade wind

2.7.38 m ≈ 4 · 1016 kg.

2.7.39 a. ”Humps” of tidal deformations of the Earth
and tides in its oceans are delayed in relation to
the passing of the zenith and the antizenith by
the Moon or the Sun. b. The tide in the Earth’s
atmosphere produces a momentum of forces that
accelerate the diurnal rotation.

2.7.40 v =
√
3gL

2.7.41 Q = 1
10mv2

2.7.42 cosα = 1− 3m2
2v

2

gl(4m1+3m2)(m1+m2)
.

2.7.43 At a distance of 2l
3 from the hand.

2.7.44 F ′ = F (mRxJ − 1). At x = J
(mR)F

′ = 0.

2.7.45 After the first strike, the velocity of the dumb-
bell centers is (v1−v2)

2 , and they rotate in opposite
directions with angular velocity (v1+v2)

l . After a
time πl

2(v1+v2)
the second stroke will occur; the ro-

tation will stop and the dumbbells will fly with
the same velocities as before the first impact.

2.7.46 h = H( 3m2

m1+6m2
)2.

2.7.47 M = µ(u− ωR)R.

2.7.48 N = µ(u− ωR)Rω.ω = u
R −

M
(µR2)

2.8 Statics

2.8.1 T = 98 H, F = 138 H

2.8.2 F = 0, 98 H.

2.8.3 h ≈ 700 m

2.8.4 Neighboring strands form an angle of 120◦

2.8.5 m2 = m1 sinα
sin( lR−α)

2.8.6 T ≈ 2, 6 H; α = arctg(3
√
3).

2.8.7 x = 5F
k

2.8.8 l0 = 2l2 − l1

2.8.9 T = mg
(2tgα) ;T

′ = mg
(2 sinα) .

2.8.10 FA = mg sin β
sin(β−α) ;FB = mg sinα

sin(β−α)

2.8.11 FA = mgtgα;FB = mg cos 2α
cosα

2.8.12 µ = tan(αmin2 ).

2.8.13 dmax = d0 + 2R(1− 1√
1+µ2

).

2.8.14 tgα = (µ1−µ2)
(1+µ1µ2)

.

2.8.15 µ = 1√
3

2.8.16 fn = F ( fF )
n

2.8.17 F = F0e
−µθ.

2.8.18 a.F1 = F2 = 98 H; b.F1 = 24, 5 H, F2 = 171, 5 H.

2.8.19 m ≤ 7, 5 g.
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2.8.20 m =
√
m1m2

2.8.21 ∆m = ( hL )m0tgα

2.8.22 ∆m± = µ(M+2m)r
(L∓µr) , ”excess” and ”deficiency” are

possible.

2.8.23 α = arctg( 13 ).

2.8.24 T = mgL
2h ;P = mg

√
1 + ( L2h )

2

2.8.25 Tn = (2n−1)mg
sqrt3 .

2.8.26 P = ( 14 )mgctgα

2.8.27 µ ≥ 1
3

2.8.28 l < L < l
√
1 + µ2

2.8.29 α ≤ arctg2µ.

2.8.30 α > π
3 .

2.8.31 cosφ = ctgα√
3
, consider µ > tgα.

2.8.32 tgα ≤ 1
µ

2.8.33 F = mg
2 , α = 0 at µ ≥ 1

2 ;F =
mg
2µ

√
5µ2 − 4µ+ 1, tgα = 1−2µ

µ at µ = 1
2 .

2.8.34 tgα ≥ (1−µ1µ2)
(2µ1)

.

2.8.35 F ′ = F (l+µh)
(l−µh)

2.8.36 sinα = µR

(l+R)
√

1+µ2

2.8.37 ω = vh
R2 .

2.8.38 Reasonable

2.8.39 Fax = mg;Fpr = mg
4 , one spring is compressed,

the other is stretched.

2.8.40 m = Mr
(R−r) .

2.8.41 T = 3mg

2.8.42 ∆S = (Nlµ )α(t2 − t1)tgφ

2.8.43

2.8.44 F = µmg(
√
2− 1)

3 OSCILLATIONS AND WAVES

3.1 Small deviations from equilib-
rium

3.1.1 F ′ = −2 cosα = −2F x√
l2+x2

= [x≪ l] = −2F x
l

dU = 2F cosαdx = 2F
√

x
l2+x2= 2F x

l dx∫ U
0

dU =
∫ x
0
2F x

l dx=
2F
l

∫ x
0
dx = Fx2

l

Fx2
0

l = mυ2

2 ⇒ υ = x0

√
2F
ml

3.1.2 F = −kx - spring force
dU = Fdx = kxdx∫ U
0

dU =
∫ x
0
kxdx= k

∫ x
0
xdx= kx2

2

3.1.3 a) υ0 = x0ω = x0

√
k
m⇒ υ2

0 =
kx2

0

m ⇒ k =
υ2
0m

x2
0

b) F = −kx is the elastic force of the spring (ob-
viously), since in any case in a normal spring
pendulum the return force is equal to the elastic
force of the spring. Then: U = kx2

2

3.1.4

3.1.5 OX : F = −mg sinφ= −mg xl

U =
∫ U
0

dU =
∫ x
0
mg xl dx=

mgx2

2l

3.1.6 υmax = Aω = x0

√
g
l

3.1.7 E1 = E2

mgx2
1

2r =
mgx2

2

2R ⇒ x2
1

x2
2
= R

r ⇒
x1

x2
=

√
R
r

3.1.8 maτ = −qE sinφ = [φ−small] ≈ −qEφ = −qE 2x
l

mẍ(t) + 2qE
l x(t) = 0

ẍ(t) + 2qE
ml x(t) = 0 - we got the harmonic motion

equation.

ω =
√

2qE
ml

υ0 = x0ω = x0

√
2qE
ml ⇒ m =

2qEx2
0

lυ2
0

3.1.9 dU = Fdx

F = mg sinφ = mg x
R−r

U =
∫ U
0

dU =
∫ x
0
mg x

R−r = mg
R−r∫ x

0
xdx = mg

R−r ·
x2

2

29



3.1.10 U1 = 2kQq
L - initial energy of the system.

U2 = kQq
L−x + kQq

L+x - system energy after bead dis-
placement

∆U = U2 − U1= kQq( 1
L−x + 1

L+x −
2
L )≈

Qqx2

2πε0L3

Ek = ∆U

mυ2

2 = Qq∆x2

2πε0L3⇒ ∆x =
√

mυ2πε0L3

Qq = υ
√

mπε0L3

Qq

3.1.11 Fy = k∆l = kx cosα

mg = 2Fy cosα = 2kxcos2α

m = 2kx cos2 α
g

3.1.12 a.F = − 2mg
R x. b.R′ = R

√
3.F ′ = − 6mg

R′ x

3.1.13 v = ∆m
m

√
gR
2 .

3.1.14 Ω = φ0
l
L

√
g
h .

3.1.15 mg(x0+y0)
2

2l = mυ2

2 + MU2

2

mυ = MU

Solve the upper equation with respect to υ:

υ =
√

Mg
(M+m)l (x0 + y0)2=

√
x0g

(x0+y0)l
(x0 + y0)2=

x0

√
g
l (1 +

y0
x0
)

Solve the upper equation with respect to U :
U =

√
mg

(M+m)l (x0 + y0)2=
√

y0g
(x0+y0)l

(x0 + y0)2=

y0
√

g
l (1 +

x0

y0
)

3.1.16 Tmin = mg cosφ ≈ mg(1− φ2

2 )= mg(1− x2
0

2l2 )

ma = Tmax −mg ⇒ Tmax= m(υ
2

l + g)

mgl(1 − cosφ)= mυ2

2 - Law of Conservation of
Energy
υ2 = 2gl(1− cosφ) ≈ glφ2=

gx2
0

l

Let us substitute this expression for the velocity
into the expression for Tmax:

Tmax= mg(1 +
x2
0

l2 )

3.1.17 N = m cosφ ≈ mg(1− φ2

2 )= mg(1− A2

2R2 ) (1)

N +∆= m(a+ g)= m(υ
2

R + g)

mgR(1− cosφ) ≈ mgRφ2

2 = mυ2

2 - Law of Conser-
vation of Energy
N +∆ = m( gRφ

2

R + g)= mg(1 + φ2)= mg(1 + A2

R2 )
(2)
Then we solve the system of equations (1) and
(2) and obtain that:

A = R
√

2∆
3N+∆

3.2 Period and frequency of free oscil-
lations

3.2.1 a) The equilibrium position is at the level of the
centre of the wheel.
F = −kx = [Ω2 = k

m ] = mΩ2x

The values of the velocity and displacement of
the load are repeated after time t = T = 2π

Ω

The velocity vector will only change its direction,
and the displacement will change sign.

b) Ω =
√

k
m

R = x0, since point A is always at the same level
as the weight.

3.2.2 T = 2π
√

m
k

F = −k∆l = mg ⇒ k = mg
∆l

T = 2π
√

m∆l
mg = 2π

√
∆l
g

3.2.3 T1 = 2π
√

m
k , T2 = 2π

√
m
k′

k′ = 2k+2k - since the spring is split in two and
the length of each half is l

22

T2 = 2π
√

m
4k = π

√
m
k

T1

T2
= 2

3.2.4 a) k′ = k1 + k2 ⇒ T1 = 2π
√

m
k1+k2

b) k′ = k1k2
k1+k2

⇒ T2 = 2π
√

m(k1+k2)
k1k2

c) k′ = k1 + k2 ⇒ T3 = 2π
√

m
k1+k2

(does not de-
pend on the distance between the walls)

3.2.5 T = 2π
√

l
g ⇒ l = T 2g

4π2 = 24.8 cm

3.2.6 T = 2π
√

l
g∗ = [g∗ = g sinα] = 2π

√
l

gsinα

3.2.7 a) T0 = 2π
√

l
g , T = 2π

w

mẍ = −(mg + F ) sinφ = −(mg + F )xl

w =
√

mg+F
ml

T 2

T 2
0
= mg

mg+F ⇒ F =
mg(T 2

0 −T
2)

T 2

b) mẍ = −(
√

(mg)2 + F 2) sinφ

mẍ = −(
√
(mg)2 + F 2)xl

w =

√√
(mg)2+F 2

ml

T 4
0

T 4 = (mg)2+F 2

(mg)2 ⇒ F = mg

√
T 4
0 −T 4

T 4
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3.2.8 Using the law of gravity, let us write down the
equations for determining the free-fall accelera-
tions, taking into account that the acceleration
above the field will be greater than far away from
the field
g0 = 4

3πRGρ0 ≈ 4πRGρ0

g = g0 + gk ≈ g0 + 4πRG(ρ− ρ0)

Let’s write down the ratio of the periods of os-
cillation of the pendulum given by the problem
condition
α = T−T0

T0
= 0, 1; ξ = T

T0
= 1 + 10−3

Let’s express the ratio of periods through the
values of free-fall acceleration
ξ2 = g0+g

g0
= 1 + r(ρ−ρ0)

Rρ0

r = (ξ2−1)Rρ0
ρ−ρ0 ≈ 30 km

3.2.9 T0 = 2π
√

l
g , T1 = 2π

√
l
g∗

g = GM
R2 , g∗ = GM

(R+H)2

g
g∗ = (R+H)2

R2 ⇒ g∗ = gR2

(R+H)2

T1 = 2πR+H
R

√
l
g

∆T1 = T1 − T0 = T0(
R+H
R − 1) = 2 min

∆T2 = T2 − T0 = T0(
R+h
R − 1) = 6.75 s

3.2.10 F = 2Tsinφ

mẍ(t) + 2T sinφ = 0 (sinφ ≈ φ = x
l )

ẍ(t) + 2T
mlx(t) = 0

ω∗2 = 2T
ml ⇒ T = mlω∗2

2

3.2.11 mẍ(t)− F = 0

F = kqQ( 1
(L−x)2 −

1
(L+x)2 )

F = − 4kqQLx
(L2−x2)2 ≈ −

4kqQx
L3

ẍ(t) + 4kqQx
mL3 x(t)

ω =
√

4kqQ
mL3 =

√
qQ

mπε0L3

3.2.12 F = mg xR

mẍ(t) + mg
R x(t) = 0

ẍ(t) + g
Rx(t) = 0

ω =
√

g
R ⇒ T = 2π

√
R
g

t = T
2 = π

√
R
g = 42 min

3.2.13 mẍ(t) + F = 0

F = mgcosφ = mg xR ⇒ ω =
√

g
R⇒ T = 2π

√
R
g

t = T
2 = π

√
R
g ≈ 42 min

3.2.14 ma = Ffr1 − Ffr2 + F − F = Ffr1 − Ffr2{
Ffr1 = µmg(l+x)

l

Ffr2 = µmg(l−x)
l

ma = µmg(l+x)
l − µmg(l−x)

l = µmg(l+x−l+x)
l = 2µmgx

l

ẍ(t) + 2µg
l x(t) = 0

ω =
√

2µg
l

3.2.15 t = 22s

3.2.16 T = 2π
√

l
g∗

(g∗)2 = a2 + g2 − 2ag cosα

g∗ =
√
a2 + g2 − 2ag cosα - Cosine Theorem

T = 2π
√

l√
a2+g2−2ag cosα

3.2.17 The weight of a pendulum in space is zero.
mẍ(t) +mΩ2(R+ l)sinφ = 0

ẍ(t) + Ω2(R+ l)φ = 0

ẍ(t) + Ω2(R+l)
l x(t) = 0

T = 2π
Ω

√
l

R+l

3.2.18 mẍ(t) + kx−mΩ2x = 0

ẍ(t) + ( km − Ω2)x(t) = 0

ω =
√

k
m − Ω2

3.2.19 Iε =
∑

M = mgxsinφ−Mglsinφ≈ φ(mgx−Mgl)

I = Ml2 +mx2

(Ml2 +mx2)φ̈+ φ(Mgl −mgx) = 0

φ̈+ Mgl−mgx
Ml2+mx2 φ = 0

ω =
√

g(Ml−mx)
Ml2+mx2

3.2.20 ω =
√

α
β

Ek = mυ2

2 ⇒ β = m
2

Ep = mgl(1 − cosφ) + k(x/2)2

2 = mglφ2

2 + kx2

8 =
mgl
2

x2

l2 + kx2

8 = x2(mg2l + k
8 )⇒ α= mg

2l + k
8

ω2 = g
l +

k
4m

3.2.21 Iε =
∑

M

I = MR2 +mR2 = R2(M +m)

R2(M +m)φ̈+mgRsinφ = 0

φ̈+ mg
R(M+m)φ = 0

ω2 = mg
R(M+m) ⇒M = m( g

ω2R − 1)
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3.2.22 a) 2mẍ(t) + 2mgsinφ = 0

ẍ(t) + g√
R2−l2x(t) = 0

ω2 = g√
R2−l2

b) ω2 = α
β

Ep = 2mgR′(1− cosφ)= 2mg
√
R2 − l2(1− cosφ)

Ep ≈ 2mg
√
R2−l2
2 φ2

α = 2mg
√
R2−l2
2

Ek = 2mυ2

2 = 2mω2R2

2 = 2mR2

2 φ̇2

β = 2mR2

2

ω2 = g
√
R2−l2
R2

3.2.23 ω =
√

α
β

Ep =
kx2

2 ⇒ α = k
2

Ek = mυ2

2 + Iω2

2 = 2mυ2

2 ⇒ β = 2m
2

ω =
√

k
2m

3.2.24 I = mR2+md2, where d is the distance from the
past axis to the present axis:
I = mR2 +mR2 = 2mR2

L = 2mR2

mR = 2R

T = 2π
√

L
g = 2π

√
2R
g

ω =
√

g
2R

3.2.25 m1xc = m2(l − xc)⇒ xc =
m2l

m1+m2

k1xc = k2(l − xc)
k1m2l
m1+m2

= k2(l − m2l
m1+m2

) = k2m1l
m1+m2

k1
k2

= m1

m2

k = k1k2
k1+k2

=
k1

m2
m1

k1+k1
m2
m1

= k1m2

m1+m2

ω =
√

k1
m1

=
√

k2
m2

=
√

k(m1+m2)
m1m2

3.2.26 ωHD
ωH2

=
√
3
2

3.2.27 Let us denote the stiffness of the springs of the
molecule model k, the mass of the balls - oxygen
atoms M and the mass of the ball - carbon atom
m (m/M = 12/16).
Making oscillations of type a), both oxygen
atoms oscillate synchronously relative to the
fixed carbon atom. This is due to the fact that by
virtue of the symmetry of oscillations of oxygen
atoms on the carbon atom at any moment act
on both sides equal in absolute value and oppo-
sitely directed forces that ”balance” each other.

Therefore, in case (a) oxygen atoms make free
oscillations, the period of which is equal to

Ta = 2π
√

M
k

At oscillations of type b), equal in absolute value
forces act on the carbon atom, and they are di-
rected in the same direction. If the ball - car-
bon atom is divided into two equal parts, it is
clear that they will oscillate as one whole: equal
forces always act on them and, consequently, the
ball-halves and any moment will have the same
acceleration, velocity and coordinates. The fre-
quency of oscillation of the molecule CO2, is
equal to the frequency of oscillation of a system
consisting of an oxygen atom and half a carbon
atom. Thus, the problem is reduced to the de-
termination of the period of oscillation of balls
of masses M and m/2 connected by a spring.
Such balls oscillate about the stationary cen-
tre of mass of the system. If the length of the
spring in the unstretched state is l, then the cen-
tre of mass of the system is at a distance l m

m+2M
from the ball of mass M . Therefore, we can con-
sider that the ball of mass M (oxygen atom) os-
cillates relative to the centre of mass on a spring
of length
l1 = l m

m+2M .
The stiffness of a part of the spring is greater
than the stiffness of the whole spring. Since the
stiffness is inversely proportional to the ratio of
the length of this part to the length of the whole
spring, the stiffness of the part of the spring is
k1 = k l

l1
= km+2M

m

The period of oscillation of a ball of mass M on
a spring of stiffness k1 is equal to

Tb = 2π
√

M
k1

= 2π
√

mM
k(m2M) ,

Tb
Ta

=
√

m+2M
m =√

1 + 2M
m .

Since M
m = 16

12 = 4
3 , then:

Tb
Ta

=
√
1 + 8

3 =
√

11
3 .

Hence, the ratio of frequencies:
νb
νa

=
√

3
11 .

3.2.28 T = 2π
√

β
α

Ek = mυ2

2 + MU2

2

mυ = MU ⇒ U = mυ
M

Ek = mυ2

2 + m2υ2

2M = m
2 (1 +

m
M )υ2

β = m
2 (1 +

m
M )

Ep = mgl(1− cosφ) ≈ mglφ
2

2 = mg
2l x

2
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Figure 1: For the 3.2.31

α = mg
2l

T = 2π
√

l(m+M)
Mg

3.2.29 This system can be considered as oscillations of
four pendulums on springs of stiffness 2k each.
The stiffness of the springs increases as the balls
oscillate relative to the centres of mass of each
system consisting of two balls and a spring (the
centre of mass of this system is the centre of the
spring).
T = 2π

√
m
k∗ = 2π

√
m
2k

a) t1 = T
4 = π

2

√
m
2k

b) t2 = 3
4T = 3

2π
√

m
2k

3.2.30 When the thread is twisted, the force is propor-
tional to the angle of twist
F = −kφ
I0φ̈ = −kφd

T0 = 2π
√

T0

kd

Likewise
(I0 + I1)φ̈ = −kφd
T 2

T 2
0
= I+I0

I0

I = I0(
T 2

T 2
0
− 1)

3.2.31 Let spring is stretched to the x.

h =
√
L2 − (L+x)2

4 = L
√

3
4 + 1

2
x
L

h =≈ L
√
3
2 −

1
2
√
3
x

Ep =
kx2

2 , Ëp = k

h′ = − 1
2
√
3
ẋ

Ek = 2mh2

2 = 1
2 ẋ

2(2m 1
12 )

α0 = m
6

ω0 =
√

6k
m

3.2.32 ω1 =
√

Mg
(ml) , ω2 = 2ω1 = 2

√
Mg
(ml) .

3.2.33 T = 2π
√

β
α

Ek = mυ2

2 ⇒ β = m
2

Ep = m′gx = mx
l gx = mg

l x2 ⇒ α = mg
l

T = 2π
√

l
2g

3.2.34 T = 2π
√

β
α

Ek = m(ẋ)2

2 + M(ẋ′)2

2

S1x = S2x
′ ⇒ x′ = S1x

S2

Ek = ρHS1(S1+S2)
2S2

(ẋ2)

β = ρHS1(S1+S2)
2S2

Ep = mg x2 + MGx′

2 =
ρgS1x

2

2 + S1

S2
ρgS2

x2

2 =
ρgS1(S1+S2)

2S2
x2

α = ρgS1(S1+S2)
2S2

T = 2π
√

H
g

3.2.35 ω =
√

g
H

3.2.36 ω =
√

k

[m+πρlR4

r2
]
.

3.2.37 T0 = 2π
√

H1

g

T = 2π
√

H2

g = 2π
√

H1+∆H
g

M = ρwH1S ⇒ H1 = M
ρwS

M +m = ρwH2S ⇒ H2 = M+m
ρwS

M =
T 2
0 ρwgS
4π2

M +m = T 2ρwgS
4π2

m = T 2ρwgS
4π2 − T 2

0 ρwgS
4π2 =

ρwgS(T
2−T 2

0 )
4π2 ≈ 900 T

3.3 Harmonic motion

3.3.1 The coordinate depends on time according to the
law
x(t) = A cosωt

Differentiating by time, we obtain the time de-
pendence of velocity
dx
dt = A d

dt cosωt

v = −Aω sinωt

Similarly, differentiate the velocity to get the ac-
celeration
dv
dt = −Aω d

dt sinωt

33



a = −Aω2 cosωt

According to Newton’s second law, the force act-
ing on a body is defined as
F = ma

F = −mAω2 cosωt = −mω2x

By Hooke’s law
F = −kx
Where is the stiffness of the spring

k = mω2

3.3.2 a)x = 5sin(3, 13t). b)x = 5 cos(3, 13t). Displace-
ment is measured in millimeters, time in sec-
onds

3.3.3 T = 0, 06 s

3.3.4 From 3.3.1, we find that velocity depends on
time according to the law
v(t) = v0 sinωt

Given that kinetic energy is defined by the ex-
pression
Ek = mv2

2

The dependence of kinetic energy on time will
have the following form
Ek = E0 sin

2 ωt

The moment of time when Ek is Ek = E0

2 is de-
scribed by Eq.
sin2 ωt = 1

2

Whence
sinωt =

√
2
2

This will occur at the nearest moment equal to
t = π

4ω

3.3.5 The first part of the path ”up to the nail”, the
pendulum will pass in time

T1 = 1
22π

√
l
g = π

√
l
g (1).

After hitting the nail, half of its length remains
in place and the other half continues to move at
the same speed
Thus, the length of the pendulum is halved.
l→ l

2

Making the substitution in (1)

T2 = π
√

l
2g

Thus the total period of oscillation
T = T1 + T2

T = (1 + 1/
√
2)π

√
l

g

3.3.6 Similarly to 3.3.5, the oscillation will consist of
two half-oscillations When a body slides along
a trough of radius R, its motion, from the point
of view of kinematics, is no different from the
motion of a mathematical pendulum with a long
thread R Thus, the period of oscillation is

T0 = 2π

√
R

g

I.e. half of the chute, it will pass in time

T1 = π

√
R

g

Similarly, for a gutter of radius r

T2 = π

√
r

g

Thus the total period of oscillation

T = T1 + T2

T = (

√
R

g
+

√
r

g
)

3.3.7 t = π

2
√

l
g

; will not change

3.3.8 t = π
√

m
(2πR∆p) .

3.3.9 Focused at distances l = π(n + 1
2 )v0

√
m
k , where

n is an integer

3.3.10 The number of intersections is equal to an inte-
ger part of the value l

πv0

√
g
R

3.3.11 T = ( 43 )π
√
lg

3.3.12 l = Acos[π(1− T
T0
)].

3.3.13 t = [π + 2arctg
√

mg
2k(H−h) ]

√
mk

3.3.14 t = π
2

√
l

(µg) at v =≤
√
µgl, t = v′

µg +√
l

(µg)arccos
v′

v at v >
√
µgl, where v′ =√

v2 − µgl.

3.3.15 w = 2R
(πA) at A≫ R,w = 1

3 at A = 2R. Increase

3.3.16 u = d
2πn

√
k
m , where n is an integer.

3.3.17 t = T
4 + τ

2

34



3.3.18 a)x = mg
k (cosωt− 1).b)x = mg

k + l(cosωt− 1). The
x-axis is directed vertically upwards, the origin
is at the initial position.

3.3.19 v = mv
m+M cos

√
k

m+M t, x = mv√
k(M+m)

sin
√

k
m+M t.

3.3.20 From the moment the ball hits the wall for the
first half-period there is compression and return
of the spring to an undeformed state. Then a
second strike at the moment when the spring is
not deformed, after which the balls start mov-
ing with constant velocity v. The period T =

2π
√

m
(2k) .

3.3.21 v1 = m1

m1+m2
v(1 + m2

m1
cosωt), v2 = m1

m1+m2
v(1 −

cosωt).

3.3.22 Fmax = 2F ; τ = T
2

3.3.23

3.3.24 A =
√

A2
0 +

F 2

k2 −
2A0F
k cosωt0. When t0 = π(2n+

1)ω, where n is an integer, the amplitude is the
largest; at t = 2πn

ω it is the smallest.

3.3.25 x0 = u
√
mk.

3.3.26 If u ≥ µg
√

m
k a harmonic oscillation with am-

plitude A = µmg
k , at lower u an oscillation with

amplitude A = usqrtmk .

3.3.27 µ = kl
(4Mgn) .

3.3.28 BC = g(M+m)
(Mω2) .

3.3.29 F = −mω2x = −mω2A cos(ωt + φ), the force
mω2A is reached at time t = (πn−φ)

ω , where n
is an integer.

3.3.30 When ω2A > g, the load bounces and its de-
tachment from the surface of the diaphragm oc-
cursabove its middle position.

3.3.31 A = F
(mω2) .

3.3.32 h = A+ g
(2ω2) +

ω2A2

(2g) at ω2A > g.

3.3.33 A = ( gω2 )
√
π2n2 + 1, where n — integer.

3.3.34 At an amplitude A≫ 10−11 cm, the acceleration
of the plate face is much greater than the accel-
eration g = 0.8 m

s that friction can provide, so
the load practically stays in place with almost
no effect on frequency. At amplitude A < 10−11

cm, the weight moves with the end and affects
the frequency in a noticeable way. vmax = πg

(2ω) ≈
1.57 · 10−6 m

s .

3.3.35

3.3.36 uav =
πv0tgα
(2µ)

3.4 Overlapping oscillations

3.4.1 There will be a superposition of horizontal and
vertical harmonic oscillations with frequencies
ω1 =

√
2k1
m and ω2 =

√
2k2
m . At k1 ̸= k2 rectilin-

ear motion is possible only vertically and hori-
zontally.

3.4.2 A body deflected from its equilibrium position by
a distance r needs to be given a velocity v = ωr,
where ω =

√
k
m .T = 2π

ω .

3.4.3 a. The trajectory is an ellipse with semi-axes A
and v

ω . The limits of the variation of the distance
from v

ω to A.
b. The trajectory is an ellipse with semi-axes√

1
2 (A

2 + v2

ω2 ±
√
(A2 + v2

ω2 )2 − 4(xvω )2)

3.4.4 2φ = π
6 .

3.4.5 When 2φ = πn, where n is an integer, the screen
shows a segment; when 2φ = ±π2 + 2πn− cir-
cle. The length of the semiaxes of the ellipse is
A
√
2 cosφ and A

√
2 sinφ.

3.4.6 Ellipse with axes vertically and horizontally.

3.4.7 The segment along the diagonal of the screen
will become an ellipse extended along the diago-
nal. ellipse, whose semi-axes will gradually be-
come equal in length. Then a circle will appear,
which will begin to turn into an ellipse stretched
along the other diagonal of the screen, and so on.
After a time of 2π

Ω the whole cycle will repeat.

3.4.8 Tx : Ty = 1 : 2, except in the case d, when Tx :
Ty = 2 : 1.

3.4.9 If Tx : Ty = p : q, where p and q are integers,
then in time pTy = qTx the point will return to
its initial position. If Ty = Tx, the trajectory of
the point is an ellipse.

3.4.10 ωy : ωx = p : q = 3 : 4.

3.4.11 µmin = 2F
(M+m1+m2)

, except for the case
√

m1

m2
=

p
q , where p and q are odd integers.

3.4.12 F = k[A2 cos(ωt+ φ2)− A1 cos(ωt+ φ1)].Emax =
k
2 [A

2
1 + A2

2 − 2A1A2 cos(φ2 − φ1)].Eav = k
4 [A

2
1 +

A2
2 − 2A1A2 cos(φ2 − φ1)]. When φ2 − φ1 = π the

average energy takes the highest value, when
φ2 − φ1 = 0 - the lowest.

3.4.13 F = 2kA sin(ω2−ω1

2 t) sin(ω2+ω1

2 t).Eav = k
4 (A

2
1 +

A2
2)

3.4.14 N = ( 12 )ωF0A sinφ
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3.4.15 a.ω1 =
√

3k
m , ω2 =

√
k
m .

b.v1 = v(cosω2t+cosω1t)
2 , v2 = v(cosω2t−cosω1t)

2 ;x1 =

x2 =
v( 1
ω1

+ 1
ω2

)

2 ; ∆x = v
ω1

.

c.v1 = v(2cosω2t + cosω1t), v2 = v(2cosω2t −
cosω1t);x1 = x2 =

v( 2
ω1

+ 1
ω2

)

2 ; ∆x = 2v
ω1

..

3.4.16 The motion of the atoms will be the sum of the
following motions: a) all atoms move progres-
sively with velocity v0; b) the carbon atom is sta-
tionary, and the velocities of the oxygen atoms
are equal in modulo and oppositely directed:
v
(1)
0 = ±v1 cosω1t, ω1 =

√
k
M ; c) oxygen atoms

move with the same velocity v2 cosω2t towards
the carbon atom whose velocity which is equal
to
−v2 2M

m cosω2t, ω2 =
√
k( 1

M + 2
m )

Shift of the oxygen atom toward the carbon atom
∆x = |v1|

ω1
+ (1 + 2Mm ) |v2|

ω2
= 1

2v(
1
ω1

+ 1
ω2

).

3.4.17 xmax =
v(ω1+ω2)[l(ω

2
1−ω1ω2+ω

2
2)−g]

ω1ω2[l(ω2
1+ω

2
2)−2g]

, L = g2

l(ω1ω2)2

3.4.18 k =
m(ω2−ω2

0)
2 .

3.4.19 A1,2 = (A±B)
2 ;ω1,2 = 2π

τ ±
π
T

3.5 Forced and damped oscillations

3.5.1 See Fig.

3.5.2 See Fig.

3.5.3 See Fig. If the shocks follow each other at inter-
vals of time T0, then amplitude

An =
√

[v0ω + np
(mω)]2 + x2

0.

If at intervals T0

2 , the amplitude

An =
√

[v0ω + np
(mω)]2 + x2

0. for odd n

An =

√
v20
ω2 + x2

0 for even n, ω = 2π
T0

3.5.4

3.5.5 About 63 cm.

3.5.6 Potholes on the road on the entry side are less
frequent than on the exit side

3.5.7 Before the course and speed of the boat was
changed, there was a resonant swaying.

3.5.8 As the amplitude increases, the loss per period
increases. When they are equal to energy gain
due to the shock, further rocking will stop.

3.5.9 N = bv2

3.5.10 d
dt (

kx2

2 + mv2

2 ) = −bv2, hence mdv
dt = −kx− bv.

3.5.11 See Fig. a: after a single shock there is a gradual
damping of oscillations;
Fig. b: with periodic shocks, initially the oscil-
lations swing, and then,when the energy gain of
the order of pv compares with the loss per pe-
riod having the order bv2T , the oscillations are
established.

3.5.12

3.5.13

3.5.14 At γω0 ≈ 1.

3.5.15 The speed of the oscillator is less in n2, n3 times
its initial velocity

3.5.16 In τ2 the energy will decrease fourfold. In time
τ2
2 the energy will be halved.

3.5.17 See Fig.

3.5.18

3.5.19 γ = 102 s−1, ω = π · 103 s−1. The error in re-
placing ω by ω0 is quadratic on the small value
of γ

ω0
.

3.5.20 a.γ ≈ 10−2 s−1.

b.γ′ = γ
4 .

3.5.21 a.Q = ω0

(2γ) , n = Q
(2π) .

b. About 50 times for Q = 108 and only 1.5 times
at Q = 109

3.5.22 vmax = p
m

2
1−exp(−2πγ

ω )
.

vmax ≈ 2p
m if 2πγ

ω ≫ 1;

vmax ≈ 2ωp
(2πγm) if 2πγ

ω ≪ 1

3.5.23

3.5.24 A = F0

(mω2) .

3.5.25

3.5.26 a.A = F0

[m(ω2−ω2
0)]

, ω0 =
√

k
m .

b.A = F0

[m(ω2
0−ω2)]

, ω0 =
√

k
m .

3.5.27 A = F0

[m(ω2−ω2
0)]

. The quantities B and φ are cho-
sen so that at time t = 0 the initial conditions
x(0) = x0, v(0) = v0.

3.5.28 x0 = F0/[m(ω2
0 − ω)], v0 = 0, then B = 0.
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3.5.29 The additional acceleration associated with free
oscillations multiplied by the by the mass of
the oscillator is equal to the additional internal
force.

3.5.30 Let us consider an example of vibrations of a
body attached to a spring. Forced vibrations of
this body with a frequency less than the natu-
ral frequency can be imagined as free vibrations
on the same spring of the body with additional
mass. The force with of this mass can be con-
sidered as a forcing force. It is directed against
the elastic force and therefore in the direction of
displacement. The forced oscillations with a fre-
quency greater than the of the same body with
an additional spring attached to it. The elastic
force of this spring can be can be seen as a forcing
force. It is directed against the displacement.

3.5.31

3.5.32 See Fig.x(t) = 2F0

m(ω2
0−ω2)

sin(ω−ω0

2 t) sin(ω+ω0

2 t).

3.5.33 x(t) ≈ F0t
m(ω+ω0)

sin(ω+ω0

2 t).

3.5.34 x(t) ≈ F0t
2mω0

sinω0t.

3.5.35 At |ω − ω0|γ, the initially occurring beats grad-
ually transform into forced oscillations due to a
decrease according to the law e−γt of the term
changing with the frequency ω0. At ω = ω0

the initial swing of oscillations with linearly
increasing amplitude smoothly decreases and
forced oscillations are established. The charac-
teristic establishment time is equal to the time
of damping of free oscillations τ = 1

γ , when their
amplitude decreases by e. times.

3.5.36 a.F = −2Aγmω0 sin(ω0t−φ). b.A = −F0(2γmω0);
in ω0

(2γ) times.

3.5.37 γ = F0

(2x0ωm) .

3.5.38 ω0 = 550 s−1, γ = 50 s−1, Q = 5, 5.

3.5.39 About 105 s.

3.5.40 v = ω0λ
(2π) .

3.5.41 The velocity of the particles after the time of
flight v = F0

mω (1 − cosωt); their average velocity
vav = F0

(mω) ; the highest velocity Vmax = 2F0

(mω)

is attained by these particles at a distance of
F
mω2π(2n+ 1) from the source, where n is an in-
teger.
The velocity of the particles emitted at time t =
π
ω , v = F0

mω (cosωt−1); their average velocity vav =
F0

(mω) ; the highest velocity vmax = 2F0

(mω) is reached

by these particles on the other side of the source
at the same distance.
The velocity of the particles emitted at moment
t = π

(2ω) , v = F0

mω sinωt; their mean velocity
vav = 0; the highest velocity of these particles,
vmax = F0

(mω) , is attained at distance F0

(mω2) from
the source.

3.5.42 Cycloid; the average velocity vav = F0

(mω) is di-
rected along the x-axis. If at t = 0 vx = −F0

(mω)

and vy = 0, the particle will move on a circle of
radius r = F0

(mω2) .

3.6 Deformations and stresses. Wave
velocity.

3.6.1 F
k ;

(N−1)F
k

3.6.2 Increase by 10−14 m

3.6.3 k = ES
L , F = ES(∆LL ).

3.6.4 k = Ea

3.6.5 See Fig. l = 3 mm

3.6.6 108 to −0.5 to 108 Pa

3.6.7 F = 5 · 104 H

3.6.8 At 1.2− 10−4m

3.6.9 ∆l = mal
(2ES) .

3.6.10 w = Eε2

2 = σ2

(2E)

3.6.11 Amin = π2

6
Ea4

l

3.6.12 ν = k
(k+2k0)

3.6.13 ν = k
(k+2k0)

3.6.14 Increasing. ν = 0, 5.

3.6.15 χ = 3(1−2ν)
E

3.6.16 Increases by about 30m. The density of water is
greater by 50 kg

m3 . The energy in unit volume is
2.5 · 106 J

m3 .

3.6.17 The horizontal component of the tension force of
the thread is equal to F ; by the slope of the non-
horizontal part of the thread, the vertical com-
ponents of the tension force are found, and by
them the required forces.

3.6.18 See Fig. The forces applied to the bending points
1, 2, 3 : F1 = −F0b

L , F2 = F0(
b
L + b

l ), F3 = −F0b
l .
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3.6.19 u = −cε.

3.6.20 a.dpdt = −ρ
c2ε. b.F = F0ε; c =

√
F0

ρ

3.6.21 a.ε = −b
L , w = Eb2

(2L2) ;u = −cε = cb
L . b.c =

√
E
ρ .

3.6.22 a.dpdt = ρcuS = −ρc2εS. b.σ = −Eε, c = pE
ρ .

3.6.23 5 km
s . Let’s make a thin rod in a sheet of steel.

Its transverse displacement is ”interfered” by
neighboring parts of the sheet. The stiffness of
such a rod is greater than that of a rod with a
free side surface.

3.6.24 550, 1400 and 340 m
s

3.6.25 c2 = ρ(P−P0)
[ρ0(ρ−ρ0)] .

3.6.26 With compression smoothly decreasing toward
the wave front, the speed of sound is greater at
the more distant sections, the disturbances of
the medium catch up with each other. In the
case of rarefaction, the distant sound velocity
is lower, they lag behind, and the disturbance
blurs.

3.6.27 See Fig. Particle velocity and the height of wa-
ter level rise in a running wave are related by the
relation u

c = ∆h
h . We equate the rate of change

in momentum with the difference in pressure
forces; ρhcu = ρgh∆h. Hence c =

√
gh

3.6.28 c = ωl
2arcsin( ω

2ω0)
. At ω ≪ ω0 c = ω0l, ω0 ≈ 0.5 ·1014

Hz.

3.7 Wave propagation

3.7.1 p = ρcbS.

3.7.2 a.qp = ∆ρc2. b.v = ∆ρc
ρ

l
L ;x = ∆ρ

ρ l.

3.7.3 P (t0 − r
c ), where r is the distance to the sensor.

3.7.4 The momentum flux density qp = ρcu(x0 − ct).

3.7.5 F = 1400 N

3.7.6 u = F
(S

√
Eρ)

, ε = −F
(SE) ; ρ

′ = ρ[1 + F
(SE) ]. The

momentum p = 0.5Fτ p′ = Fτ ; energy W =
0.5F 2τ
(S

√
Eρ)

,W ′ = F 2τ
(S

√
Eρ)

.

3.7.7 A = 12.5 · 103 J , KA = 0.25.

3.7.8 See Fig.;u = c1c2
c1+c2

F⊥
F∥ , c1 =

√
F∥
ρ′1

, c2 =
√

F∥
ρ′2

3.7.9 The vertical forces F1,3 = (ρv2−F )b
L and F2 =

2(F−ρv2)b
L . When v →

√
F
ρ the forces, acting on

the string, tend to zero - the string ”does not re-
sist” bending. If the forces on the are fixed in one
way or another, then if v →

√
F
ρ the deformations

of the string increase infinitely. deformations of
the string.

3.7.10 The velocities of the ”bend” waves and the distur-
bance will coincide, which will lead to a sharp in-
crease in the amplitude of the waves in the tire.
This in turn can cause the tire to rupture.

3.7.11 The speed of the boat and the speed of the wave
that the boat excites in the river coincided.

3.7.12

3.7.13 Flat front. The direction of propagation forms
an angleαwith the normal to the of the interface
(sinα = c

v ).

3.7.14 α1 = α, sinα2 = ( c2c1 ) sinα.

3.7.15 Engine noise propagates slower than the shock-
wave front generated by of a supersonic aircraft.

3.7.16 sinα0 = c1
c2

3.7.17 Only the direction of the refracted wave will
change:

sinα2 = c2 sinα1

c1+v sinα1

where c1 and c2 are sound velocities in still air
and water, v is air flow velocity, α1 is angle of
incidence.

3.7.18 a. The parts of the wave front farther from the
shore move at a greater speed than those less
distant. Therefore, the angle between the wave
front and the shore near the shore decreases. b.
See Fig.

3.7.19 A complete internal reflection is possible at the
depth interface.

3.7.20 See figure showing ”sound rays” that are orthog-
onal to the wave surfaces; in the wind direction
the sound goes almost along the Earth’s surface,
and in the opposite direction it goes away from
it.

3.7.21 ν = ν0
(1− v

c )
.

3.7.22 ν1,2 = ν0(1± v
c ); ν3 = ν0[1− ( vc ) cosα].
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3.8 Wave superposition and reflection
.

3.8.1 In the first case (see Fig. a to Problem 3.8.1) the
kinetic energy is zero, and potential energy U =
2E. In the second case (see Fig. b to Problem
3.8.1) the kinetic energy K = 2E, and potential
energy is equal to zero.

3.8.2 Spreading strain waves with ε = −0.5 · 10−3.

3.8.3 See Fig.

3.8.4 See Fig. P = 2ρcωA cosωt. Wavelength λ = 2πc
ω .

There is a velocity node and a pressure beam
near the wall. The first pressure node is away
from the wall at a distance of λ

4

3.8.5 See the figure in the problem condition. In a
”non-inverted” displacement wave, the sign of
the deformation is opposite to the sign of defor-
mation of the incident wave.

3.8.6 A = v0
2ω . At the end of the rod there is a velocity

beam and a pressure node. The first node of ve-
locity is at a distance λ

4 from the end of the rod
(see Fig.).

3.8.7 When a wave reflects from the inner surface of
the glass, it creates a region of of high tension
(stretching).

3.8.8 u = 2P
(ρc) = 250 m

s ; l = cτ
2 = 1cm.

3.8.9 l = 1
2 (L −

c
ωarcsin

σ
σ0
) = L

2 (1 −
1
πarcsin

σ
σ0
).l = L

2

at σ0 ≫ σ, l = L
4 at σ0 ≈ σ.

3.8.10 P = ρcu = 3.9 · 104 atm. The force applied to
the end of the rod from the side of the wall gen-
erates a compression wave in it. Reaching the
free end, it is reflected from it. The reflected
wave is a tensile wave. When the reflected wave
and the force wave from the wall overlap, the de-
formation disappears and the velocity of the rod
sections changes sign. When the front of the re-
flected wave reaches the wall, the entire rod is
undeformed and its contact with the wall ceases.
The contact time τ = 2l

c = 4 · 10−4 s.

3.8.11 vl = v, vL = v|1− 2l
L |.

3.8.12

3.8.13 v1 = 0, v2 = vl1
l2
.

3.8.14 urefl
ufal

=
√
ρ1E1−

√
ρ2E2√

ρ1E1+
√
ρ2E2

,
urefr
ufal

= 2
√
E1ρ1√

E1ρ1+
√
E2ρ2

3.8.15 D ≈ 4ρ1c1
ρ2c2

≈ 1, 1 · 10−3.

3.8.16 In the presence of the spacer, the coefficient of
passage of the wave received by the sensor in-
creases from 0.25 to 0.41. Secondary signals
(”echo-signals”) appear, following each other at
2l
s intervals, the power of which decreases geo-
metrically. At high frequency of signals repeti-
tion ”echo-signals” overlap each other, then By
selecting the thickness of the spacer it is possible
to achieve almost complete passing or reflection
of the signal.

3.8.17 n = (ρ1c1−ρ2c2ρ1c1+ρ2c2
)2, L = 2lc1

c2
.

3.8.18 L = 2lc1
c2

.n = 1. No

3.8.19 l1 = 1.25 mm, l2 = 2.5 mm

3.9 Sound. Acoustic resonators

3.9.1 λ = c
ν = 6, 6 m

3.9.2 l = c
4ν = 82.5 cm.

3.9.3 c = 2l
ν .

3.9.4 v1 = 6.8 cm
s , v2 = 6.8 · 10−8 m

s , x1 = 0.11 mm,
x2 = 1.1·10−11 m, P1 = 3·10−4 atm, P2 = 3·10−12

atm

3.9.5 I > 3 kW
m2

3.9.6 F = 2L2ρcv. At ω ≪ c
L there is almost complete

pressure equalization in the of the air jet, so the
emission of sound is weak

3.9.7 E = 2πR2ω2A2ρc. The pressure amplitude in
the wave is inversely proportional to the dis-
tance to the center of the ball.

3.9.8 a. Two divergent waves: velocities
u = F0

2Sρc cosω(t∓
x
c )

(the coordinate x starts at the cross section
where the source of the force F is located) and
deformation ε∓ u

c .
b. A standing wave occurs between the force
sources:
u = F0

Sρc cosω(t−
l
2c ) cos

ωx
c ;

outside the sources are two scattering waves:
u = F0

Sρc cosωl2c cosω(t−
x
c )

(x-coordinate counting starts at the point lo-
cated in the middle between the sources of force
F ). If at the distance l there is an even num-
ber of half-waves, the power of the resultant the
power of the resulting wave is maximal, if there
is an odd number of half-waves - the power of the
resulting wave is zero. is equal to zero.
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3.9.9 When l = ( 14 + n)λ; when l = ( 34 + n)λ, λ = 2πc
ω .

3.9.10 L = 2λ, c = Lω
4π .

3.9.11 a. The stress nodes are at distances from the
free end divisible by λ

2 .F0 = σ0S
sin( 2πL

λ )

b. See Fig.; ω = 2πnc
(2L) , where nis an integer, c =

ωλ
(2π) is the speed of sound. We can.

3.9.12 νn = n · 2500 Hz. At a distance of 25 cm from its
ends.

3.9.13 It will be halved.

3.9.14 A = A0

|sin(ωLc )| .τ = 2π
ω|sin(ωLc )| .

3.9.15 ν = c
(2L) = 8.25 Hz.

3.9.16 As the height of the air column in the vessel
changes, its resonance frequencies change. The
sound is amplified when the difference between
the frequency of the tuning fork and one of the
resonant frequencies of the air column.

3.9.17 50, 250, 450 m, etc.

3.9.18 ν
(1)
0 = 300 Hz;ν(2)0 = 150 Hz.

3.9.19 To make the instrument’s natural frequency set
as rich as possible. The tone decreases as the
size increases.

3.9.20 The sound of the voice is influenced by the air’s
own vibrations. The corresponding wavelengths
in a helium-oxygen medium will be unchanged,
and the frequencies will increase as the of sound
velocity. The overall tone of the voice will in-
crease. The frequency of vibration of the tuning
fork will not change, the same frequency as the
sound.

3.9.21 F = 4l2ν2µ = 144 N.

3.9.22 Near the displacement bundles at a distance of
l
6 or l

3 from the end of the string.

3.9.23 Because of the friction between the hand and the
rod, there will be a large loss of energy. They are
lowest for the middle of the rod, where there is a
velocity bundle, the highest for its ends, where
there is a velocity bundle.

3.9.24 The main energy losses are associated with the
transition of the wave from one medium (sap-
phire) to another (air). The transmission coeffi-
cient is. D = 4ρaircair

ρsapf csapf
= 0.7 · 10−4(see Problem

3.8.15). The losses will increase about 104 times.

3.9.25 The power of a passing wave is the same fraction
of the incident wave power whether the sound
travels from air to water or from water to air,
and this fraction is very small. Pressure is an-
other matter. When a sound wave is reflected
in the air at the boundary with water, a pres-
sure beam is formed, so the pressure in the wave
passing into the water is almost twice as much
as the pressure in the incident sound wave. (We
consider only the normal falling wave at the
boundary of the two media; in other cases the
picture is qualitatively the same). When, how-
ever. sound wave falls on the interface out of wa-
ter, a pressure node is formed at that interface,
and the pressure in the passing wave in the air
is nearly zero. This approximation is based on
the fact that ρc for the wave and air differ many
times (about 330times). It is possible to calculate
the pressure change accurately. The pressure in
a passing wave in the first medium
Prefr1 = 2ρ1c1

ρ1c1+ρ2c2
Pfal2

where Pfal2 is the pressure of the incident wave
in the second medium. When passing from wa-
ter to air, the pressure decreases by a factor of
about 150.

3.9.26 M =
√
mk
ω ctgω

√
m
k .

4 FLUID MECHANICS

4.1 Fluid pressure

4.1.1

4.1.2 F1 = 2000
√
2 N . F2 = 0.

4.1.3 P = 4√
3
F
a2

4.1.4 Yes.

4.1.5 F = 2πr2P.

4.1.6 F = π(R2 − r2)P.

4.1.7 σ = (R−∆)2

R2−(R−∆)2P

4.1.8 The force F1 acting per unit length of the circum-
ference of the sausage cross section is less than
the force F2 acting per unit length of the perime-
ter of its longitudinal section.

4.1.9 Atdistancel =
d21−d

2
3

d21+d
2
2+d

2
3
a to the left of the center

of the stick.

4.1.10 h = 727 cm.
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4.1.11 FN = 4392 N ; Fc = 4314 N ; Fb = 4353 N ; F = 78
N.

4.1.12 F = ( 1
12 )ρga

2(3
√
3h−

√
2a) + ( 14 )Pa2

√
3.

4.1.13 Constituent forces parallel and perpendicular
to the bottom of the vessel: F∥ = a3(ρ −
ρ0)g sinα, F⊥ = a3ρ0g(

ρ
ρ0
cosα+ 1

2 sinα+
h
a )+Pa2.

4.1.14 x = H − (R
2

r2 )(1 +
a
r )(

ρ
ρ0−1 )h.

4.1.15 h = 85 cm.

4.1.16 h = 10, 1 m.

4.1.17 m = πR3ρ
3 .

4.1.18

4.1.19 A = πr2(h+ 1
2 l

r2

R2 )ρgl.

4.1.20 The pressure Pr can be found from the equilib-
rium condition of the highlighted thin cylindri-
cal volume in the figure: the force of attraction
of this volume to the center of the planet, equal
to the product of the mass of the volume by the
acceleration of the gravity field in the center of
the volume, is balanced by the pressure acting
on the lower section,
Pr =

2
3πγρ

2(R2 − r2), P0 = 2
3πγρ

2R2.

4.1.21 In the direction of acceleration of the vessel.

4.1.22 β = α− arctgµ

4.1.23 The pressure P (x) can be found from the con-
dition that the pressure force on the inner base
of the thin cylindrical volume highlighted in the
figure is equal to mω2y, where y is the distance
from the center of the cylinder to the axis of ro-
tation, m is the mass of the selected volume:
P (x) =

ρω2[(R−x)2−R2

4 ]

2 .

4.1.24 y = 1
2
ω2

g x2.

4.2 Swimming. Archimedes’ Law

4.2.1 P = mg
S + P0

4.2.2 h = H(ρ−ρ1)
(ρ2−ρ1)

4.2.3 H = (m−ρ1hS)
[S(ρ2−ρ1)] .

4.2.4 . If at a small rotation of the parallelepiped
around the axis passing through the point O,
the momentum of the forces acting on the par-
allelepiped is directed in the opposite direction
to the direction of rotation. to the direction of

rotation, its position is stable. This condition is
satisfied at
a
b >

√
6 ρ
ρ0
(1− ρ

ρ0
).

4.2.5 A = 34

4.2.6 V = 147 cm3

4.2.7 ρ = 1.5 g
cm3 .

4.2.8 ρ′1
ρ′2

= ρ1
ρ2
.

4.2.9 x = 4m
[π(d21+d

2
2)]

.

4.2.10 F = 0, 8 · 10−3 N

4.2.11 F = ( 23 )πr
3ρg(1 + 2r

l )

4.2.12 F = 1, 2 · 10−2 N.

4.2.13 ρ = 2
3

g
cm3

4.2.14 F = mg√
3

4.2.15 .a.F = ρgR(H + L
2 )

2. b.F = ρgL(H+R)2

2 .

4.2.16

4.2.17 m = 520 g

4.2.18 m = ( 43 )π(R
2 + r2)

3
2 ρ

4.2.19 m1 = ρa3(6+5tgα+tg3α)
24 ; m2 = ρa3(6−5tgα−tg3α)

24

4.2.20 T =
√
3mg
72 .

4.2.21 a. Q = 1 kJ .b. Q = πr2ρghH[1 + 1
2
h
H

ρ
ρ0
(1− r2

R2 )].

4.2.22 Q = ( 43 )πR
3ρgH = 410 J , ρ is the density of wa-

ter.

4.2.23 A = 2.5 · 106 J

4.2.24 a. Can. ρ[ g
cm3 ] = (1 + ∆

2R−2H−2∆+l )(1−
∆
l ).

4.2.25 F = ( 43 )πr
3(R− r)ρω2

4.2.26 ω =
√

(gtgα)
[R−(l+r) sinα] .

4.2.27 F ≈ (m1−m2)ω
2R

2 .
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4.3 The motion of an ideal fluid

4.3.1 28.5; 27.0; 25.6 m
s . To the twelfth floor.

4.3.2 ∆T = 2ghρS.

4.3.3 N = ρV [gh+ V 2

(2S2) ].

4.3.4 a. Because of the pressure difference in sections
1and 2, the fluid between these sections in the
direction of its movement, a resultant pressure
force greater than of the force acting on the side
of section A. b. = ρv2S1(1−S2

S1
)2

2 .

4.3.5 Pressure in the vessel Pc = P0 + ρgx, pressure
in the tube Pt = P0 + ρg(x−H).

4.3.6 F =
√
2(P + pv2)S

4.3.7 v =
√

2FS
[ρ(S2−s2)] .

4.3.8 x = 5l

4.3.9 h = 1
2g [v

2 − ( mg
ρvSN )2]

4.3.10 a = ρ−ρ0
ρ+ρ0r

2

(R2−r2)

g,∆P = ρR2

ρ(R2−r2)+ρ0r2 ρ0gh.

4.3.11 The size of the longitudinal section of the jet will
increase by a factor of 2. The velocity of simi-
lar sections in the jet will increase by

√
2 times.

Therefore, the discharge will increase by 2
√
2

times

4.3.12 The jets will be similar. All dimensions of the jet
will decrease by H

h times as the water level de-
creases, the velocity of similar sections in the jet
will decrease by

√
H
h times. Therefore, the veloc-

ity of level decrease will decrease in (Hh )
2
√

H
h =

(Hh )
5
2 times.

4.3.13 From the law of conservation of energy it follows
that the velocity of sections 2, 3of the jet on the
plane will be equal to the velocity of section 1v,
and from the law of conservation of momentum
it follows that
h1 = h(1+cosα)

2 , h2 = h(1−cosα)
2 .

4.3.14 We need to move to a frame of reference in which
the plates move along their planes. In this sys-
tem, the plates will move as two counter jets
shown in in figure a. Their motion above and be-
low the plane OO′ repeats the motion of the jet
considered in in problem 4.3.13. Then it is neces-
sary to return to the previous frame of reference
(b). v1 = vtgα2 , v2 = vctgα2 .

4.3.15 Cone; cosα = (R2−r2)
(R2+r2) .

4.3.16 The problem is reduced to Problem 4.3.15 if
we move to a frame of reference in which the
counter velocities of the armor and the metal jet
are equal in modulo. v = 1 km/s.

4.3.17 h = l cos(t
√

g
l ).P = xρg

2 in the vertical part of the
tube. P = yρg

2 in the horizontal part of the tube.

4.3.18 a = g( sS )
2.

4.3.19 E = PV.

4.3.20 v =
√

2
3
P
ρ (

R3

r3 − 1), ρ is the density of water.

4.3.21 If atmospheric pressure is not able to give the
water velocity equal to the propeller edge veloc-
ity v, a cavity may appear behind the edge;v > 14
m
s .

4.4 Viscous fluid flow

4.4.1 The force with which fluid layers act on each
other across a unit area surface area AA′, F =
η dvdx . In a stationary flow, the resultant force act-
ing on the fluid layer between any interface sur-
facesAA′ andBB′is zero. Therefore, the velocity
gradient is the same everywhere and equals v0

h ,
and the velocity at distance xfrom the stationary
plane is v0x

h , 0 < x < h, F = ηv0
h .

4.4.2 v = P
2ηx(h− x), 0 < x < h;Q = P

12ηh
3.

4.4.3 a. Q = h3ρg
3η sinα. b. α ≈ 8 · 10−8 rad

4.4.4 v = 2mg∆2

(πr2hη) .

4.4.5 a) The resultant pressure force on the ends of
the separated cylindrical volume P · πx2is bal-
anced by the force of viscous friction 2πxlη dvdx .
Therefore dv

dx = −xP2lη , 0 < x < R. b).v = P
4ηl (R

2 −
x2). Volume of fluid flowing per unit time, Q =
πR4P 2

(8ηl) .

4.4.6 t = T

4.4.7 t = 32ηl
(ρgd2 sinα) .

4.4.8 a) The momentum of forces acting on the cylin-
drical interface between the layers is indepen-
dent of the cylinder radius x, because only in
this case the resultant moment of forces acting
on the liquid between two cylindrical surfaces is
is zero and the fluid moves stationary. Therefore
Mx = −x · 2πx · ηxdωldx = M, dωldx = − M

2πηx3 , r <
x < R.

b.ωl
M
4πη (

1
x2 − 1

R2 ), ω
M
4πη (

1
r2 −

1
R2 ).

4.4.9 F = P2S2 − P1S1 − ρv21S1(1− S1

S2
).
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4.5 Liquid surface tension

4.5.1

4.5.2

4.5.3 r ≈ 0.5 cm

4.5.4 F = 2(σ1 − σ2)l.

4.5.5 σ = k(2πR−l)
(2R) .

4.5.6 a.A ≈ 2V σ
∆ . b.n ≈ 4.

4.5.7 a = 2.1 cm

4.5.8 σ = rρgh
2 .

4.5.9 Less than 0.2 cm
s2 .

4.5.10 The figure shows forces acting on a section of the
plate of unit length (double arrows), and forces
acting on sections of the lateral surface of the
liquid of unit length (bold arrows): Fx is the
desired force, mg is the force of gravity acting
on the plate, F0 = ρgxl and F∥ = ρgx2

2 - forces
caused by negative fluid pressure, σ- surface
tension. It follows from the condition of equilib-
rium of the lateral surface of the liquid,that
F∥ = ρgx2

2 = σ − σ cos θ, cos θ = 1− ρgx2

(2σ) .

From the equilibrium condition of the plate we
have
Fx = F0+mg+2σ sin θ = mg+ρgx(l+2

√
σ
ρg −

x2

4 ).

4.5.11 m = 0.55 g
cm2 .

4.5.12 a. h =
√

2σ(1−sin θ)
(ρg) . b. h = 3.9 mm

4.5.13 a. x = 2sin θ2

√
σ

(ρg) . b. x = 5.4 mm

4.5.14 a.x =
√

2ρl(σm+σl.m.−σl)
ρm(ρl−ρm)g if σl ≤ σm + σl.m.;x = 0

if σl ≥ σm + σl.m. About 2.5 km2

4.5.15 The vertical component of the surface tension
force is equal to the perimeter of the wand cross
section multiplied by σ cosϑ. Therefore, the vol-
ume of liquid lifted by surface tension does not
depend on the shape of the wand cross section,
but depends on its perimeter.

4.5.16

4.5.17 Pmax = 2σ
R + ρg(h+R), Pmin = 2σ

R + ρg(h−R).

4.5.18 R = σ
(ρgx) .

4.5.19 P = P0 + 2σ[ 1R + 1
(R−h) ]

4.5.20 About 3 liters.

4.5.21

4.5.22 .h = 2r
√

σ1+σ2−σ
σ1+σ2+σ

σ2

σ2−(σ1−σ2)2
.

4.5.23 R = rR0

(R0−r) .α = 120◦

4.5.24 m = πr2(ρh+ 2σ
Rg )

4.5.25 h = 0, 14 mm.

4.5.26 A = 1.4 · 10−5 J

4.5.27 In a thin jet, the sum of ρv2

2 + ρgh + σ
r (here

ρ, σand v are density, surface tension and veloc-
ity of the jet, and r and h are the radius of the
jet and the distance to the tap) does not change.
h ≈ 2 cm.

4.6 Capillary phenomena

4.6.1 b. From the inside

4.6.2 h = 2σ
(ρgR) ;A = 4πσ2

(ρg) ;U = 2πσ2

(ρg) . Part of the en-
ergy is converted into heat.

4.6.3 r = 1.5 µm.

4.6.4 a.V = πr3σ
(4ηh) . b.V = 1, 1 cm3

s .

4.6.5 ∆ = 0, 4%.

4.6.6 r2 = −1, 5 mm, r4 = 1, 5 mm.

4.6.7 ∆x = 2σ
(ρgr) if 0 < x < h − 2σ

(ρgr) ; ∆x = h − x if
h− 2σ

(ρgr) < x < h+ 2σ
(ρgr) ;x0 = h+ 2σ

(ρgr) .

4.6.8 rx = 2r
cosθ .

4.6.9 ω = 2
l

√
σ

(rρ) .

4.6.10 x = 2h if l > h;x = l + h if l < h

4.6.11 t = 17◦ C.

4.6.12 The wetting liquid will move towards the narrow
part of the capillary, the non-wetting liquid will
move towards its wide part.

4.6.13 x = 1
2H(1 −

√
1− 16σ

ρgαH2 ), α > 16σ
ρgH2 ;x = H,α <

16σ
ρdH2 .

4.6.14 x = σ
ρg∆ (cosθ1 + cos θ2).

4.6.15 F = aσ(1− cos θ).

4.6.16 F = 2aσ2

(ρg∆2)

4.6.17 h = σl
(Sρg) , T = 2π

√
h
g .
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5 MOLECULAR PHYSICS

5.1 Thermal motion of particles

5.1.1 K ≈ 5.8 · 10−21 J ,
√
⟨v2⟩ ≈ 1.5 · 10−4 m

s

5.1.2 Twice as much.

5.1.3 m ≥ 0.01mg.

5.1.4
√
⟨x2⟩ ≈ 6.4 · 10−8 m.

5.1.5 ∆r ≈ 7 cm.At T = 100 K d ≈ 4 cm.

5.1.6 The lighter, i.e. more mobile particles pass
through the baffle faster. Therefore, at first
the number of light particles per unit volume is
equalized, and the pressure in the section where
the heavy particles were, increases

5.1.7 PHe
PH2

= 1√
2
.

5.1.8 N1

N2
= (µ2

µ1
)

(n−1)
2 .

5.1.9 τ ′ = nτ

5.1.10 In L2

R2 times

5.1.11 N1 = N
√
T2

(
√
T2+

√
T1)

, N2 = N
√
T1

(
√
T2+

√
T1)

. Toward
the first volume.

5.2 Distribution of gas molecules by
velocities

5.2.1 a. N = 1.3 · 1015 l−1. b. N1 = 1.3 · 1017 m−3;
N2 = 1.3 · 1019 m−3.

5.2.2 N1 = 6.2 · 104 cm−3 , N2 = 1.2 · 104 cm−3

5.2.3 a) N1 ≈ 1016 cm−3 , b) N2 ≈ 2 · 1022 m−3

5.2.4 T = 21 K

5.2.5 n = 0, 13.

5.2.6 n = 6 · 10−3.

5.2.7 The temperature will decrease.

5.2.8 L = l τt0 (1 +
2t

t0+2τ )

5.2.9 v = 300 m
s .

5.2.10 v = hω
(2π) .

5.2.11 a. f ′ = 1
l f(

v
l ). b. f

′ = 1
klf(

v
kl ).

5.2.12 f(v) = 1
v0

at v0 ≤ v ≤ 2v0, f(v) = 0in the rest
region of v values. The distribution function
f(v)will shift by ∆v = Fτ

m to the region of higher
velocities.

5.2.13 a.vmin = v + Fr
m , vmax = v + Fr

m + ∆v, n′ = n.

b. vmin = v
√
1 + 2Fl

mv2 , vmax = (v +

∆v)
√
1 + 2Fl

m(v+∆v)2 ≈ v
√
1 + Fl

mv2 +

∆v.
√
1 + 2Fl

mv2 , n
′ = n.

√
1 + 2Fl

mv2 .

5.2.14 a. It will decrease by a factor of exp( 2Flαm ). b.ρ =

ρ0exp(
−mgh
kT ); it will not change.

5.2.15 m = 10−24 kg, r = 10−9 m.

5.2.16 h1 ≈ 111 km, h2 ≈ 123 km.

5.2.17 a. n ≈ n0exp(
−q
kT ). b. n = 1015 cm−3

5.3 Collisions of molecules. Trans-
port processes

5.3.1 d ≈ 0.3 nm.

5.3.2 l ≈ 60 nm

5.3.3 ν1 ≈ 6 · 1028 s−1 · cm−3; ν2 ≈ 3 · 1028 s−1 · cm−3

5.3.4 Increased by a factor of 1.5.

5.3.5 l1 ∼ π−1[4R2
1n1 + (R1 + R2)

2n2]
−1; l2 ∼

π−1[4R2
2n2 + (R1 +R2)

2n1]
−1

5.3.6 t ≈ 30 ps.

5.3.7 n = 2
√
2rAB

(rA+rB) .

5.3.8 a. A horizontal unit area ABlocated at height h
is crossed from top to bottom by a flux of radioac-
tive atoms whose density is estimated by the for-
mula W1 ≈ v̄znh+λ

2 , where v̄zis the velocity close
to the RMS

√
(v̄2z) =

√
kT
m , and nh+λ = α(h+λ)is

the number of atoms per unit volume at height
h + λ. The density of the flux of atoms coming
from below, W2 = v̄znh−λ

2 ≈
√

kT
m α(h−λ)

2 . The re-
sulting flux density of radioactive atoms on the
Earth W = W1 −W2 ≈ αλ

√
kT
m . b. D ≈ 12 µm

s .

5.3.9 D = nD1D2

(n1D2+n2D1)
.

5.3.10 t ≈ L
D ;m = DSρ

L .

5.3.11 a. The solution is similar to the solution of Prob-
lem 5.3.8a : W ≈ nαλk

√
kT0

m . No change. b. By a
factor of 6.2.

5.3.12 W ≈ 12 Wt, t ≈ 2 h. Due to air convection.

5.3.13 χ = χ1

1+ 1
4α [1+(

χ1
χ2

√
µ1
µ2

)
1
2 ]2

+ χ2

1+α
4 [1+(

χ2
χ1

√
µ2
µ1

)
1
2 ]2

5.3.14 t′ = nt

44



5.4 Particulate gases. Interaction of
molecules with the surface solid

5.4.1 ν ≈ 1024 s−1 · sm−2, ∆p
∆t ≈ 10 N.

5.4.2 Will decrease by a factor of 1to k
2 .

5.4.3 F ≈ πr2nmv2

5.4.4

5.4.5 F ≈ 4πr2Pv
√

µ
(RT ) , where R is the gas constant.

5.4.6 F = Ps
2 .

5.4.7 F ≈ PSv
√

µ
(RT ) .

5.4.8 As long as the free path length of gas molecules
is greater than the distance between the disks,
the momentum of the viscous friction force de-
pends on the pressure. φ = (φ1

P1
)P .

5.4.9 ω′ = ω( r1r2 )
2.

5.4.10 When the plates are illuminated, the temper-
ature of the blackened surface becomes higher
than the mirror surface. Therefore, in the rar-
efied gas the pressure on it is somewhat higher.
The rotor will rotate in the direction of the mir-
ror surface.

5.4.11 F ≈ 10−2 N.

5.4.12 v ≈ 1 m
s

5.4.13 P ≈ FT1

[S(T2−T1)]
.

5.4.14 P0 = P
√

T0

T

5.4.15 P ′ = P (1 +
√
2) · 2−5

4 , T ′ = T
√
2.

5.4.16 w = 1, 5kn∆T
√

3kT
µ .

5.4.17 The division value of the temperature scale
should be reduced by

√
14times.

5.4.18 m ≈ 0.1 kg.

5.4.19 r ≈ ( W1

W2πnδ
)

1
2 .

5.4.20 In case a, the thermal conductivity does not
change: in case b, it decreases by a factor of N .

5.5 Equation of state of an ideal gas

5.5.1 Three times.

5.5.2 V = (P2V2−P1V1)
(P2−P1)

.

5.5.3 ∆m = m(k−1)n
(n−1) .

5.5.4 P = P0 +
mgh

(2πr2L) .

5.5.5 V = 885 l

5.5.6 x =
L(1+ ρgL

2P )

2 .

5.5.7 P = 1, 166 MPa

5.5.8 δt = 140◦C.

5.5.9 In operation, when the gas in the cylinder is
heated, its pressure must not exceed atmo-
spheric pressure.

5.5.10 T = 9T0

8 .

5.5.11 n = (P−P0)V0

P0V
.

5.5.12 n =
ln(

P0
P )

ln(1+ V
V0

)
.

5.5.13 It doesn’t depend.

5.5.14 The burner smokes due to a lack of oxygen. A
vertical glass tube causes the flow of oxygen to
the burner flame.

5.5.15 ∆P = 137 Pa

5.5.16 T = T0
2V 0+S(l+2x)
2V 0+S(l−2x) .

5.5.17 P = 1146 hPa.

5.5.18 VB
VH

= 1, 9.

5.5.19 x = 1
2{l +H + P0

ρg −
√

(l +H + P0

ρg )
2 − 4lH}.

5.5.20 x = (H0 −H)(1− ρgh0

P0
+ ρgH)

5.5.21 a. H = h
2 (1 +

2ρgh
2P0+ρgh

). b.H = h
2 + P0

ρg

5.5.22 x =
√
33−5
2 a

5.5.23 P = P0 + ρgH.

5.5.24 P1 = 0.17 MPa, P2 = 0.18 MPa.

5.5.25 N2O3.

5.5.26 m = 210 g
m3

5.5.27 FHe
FH2

= 25
27 .

5.5.28 M = 13, 5m

5.5.29 r = 15cm.
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5.5.30 m = µP0V (T−T0)
(RTT0)

.

5.5.31 V = 15 m3

5.5.32 N = 0, 28

5.5.33 T = T0
µ(P0r+4σ)

µP0r−3δRT0ρ
,

where R is the gas constant.

5.5.34 σ = P
4
r31+r

3
2−r

3

r2−r21−r22

5.5.35 T = 2π
√

ml
(2P0S)

5.5.36 V3 =
V 2
2

V1
.

5.6 The first beginning of thermody-
namics. Heat capacity

5.6.1 ε̄H2
= ε̄N2

= ( 52 )kT, ε̄H2O = εCH4
= 3kT.

5.6.2 U1 = 0.25 J , U2 = 0.2 MJ.

5.6.3 It hasn’t changed.

5.6.4 P = P1V1+P2V2

V1+V2
, T = T1T2

P1V1+P2V2

P1V1T2+P2V2T1

5.6.5 Twice.

5.6.6 v1max ≈
√

3P0V0m2

m1(m1+m2)
v2max ≈

√
3P0V0m1

m2(m1+m2)

5.6.7 Tmax = T0 +
2mv2

(3R) , where R is the gas constant

5.6.8 v ≈ 10 m
s

5.6.9 When expanding without heat, the gas performs
work and cools down.

5.6.10 In isobaric expansion.

5.6.11 a) A = PV ; b) A = 3PV
2 .

5.6.12 A = 460 J.

5.6.13 Q = ( cR )(P2V2 − P1V1) + P2(V2 − V1), where R is
the gas constant.

5.6.14 A = 2.6 kJ

5.6.15 A = 240 J

5.6.16 Q ≈ 7.94 kJ . A ≈ 2.27 kJ.

5.6.17 A ≈ R(
√
T3 −

√
T1)

2.

5.6.18 T = T0(1 +
Mu2

3P0V0
), V = V0(

3P0V0

3P0V0+Mu2 )
3
2 .

5.6.19 A = 7νR(T1−T2)
2 .

5.6.20 ∆t ≈ 10◦C

5.6.21 umax =
√
2gHh[1− PS

Mg + PS
Mg ln

PS
Mg ];

umax =
√
2gHh[1− 5

2 (
PS
Mg )

3
5 + 3

2
PS
Mg

5.6.22 V1 =
√
V0V2, Amin = 5P0V0[(

V0

V2
)

1
5 − 1]. Each com-

pressor performs the work Amin
2 .

5.6.23 Q = 450 kJ . ∆U = 321 kJ

5.6.24 Oxygen

5.6.25 T = T0 +
Q
c when Q ≤ Q1 = cT0F

P0S
;

T =
Q+cT0+RT0(1+

F
2P0S

)

c(1+ F
P0S

)+R(1+ F
2P0S

)
(1 + F

P0S
) when Q ≥ Q1

5.6.26 Q = 10ρgSh2

5.6.27 c = ( 1
(1−n) +

3
2 )R,n = 5

3 ;n = 1

5.6.28 Cooled

5.6.29 c = 2P0V0

T0

5.6.30 x =
3H(1−PS

M g)

5 .

5.6.31 x =
3H(1−PS

M g)

5 .

5.7 Gas leakage

5.7.1 v =
√

2cPT
µ .

5.7.2 v =
√

7(k+1)RT
(kµ1+µ2)

.

5.7.3 a. T ≈ 3150 K. b. v ≈ 3 km
s .

5.7.4 a) v ≈ 5.2 km
s ; b) v ≈ 5.7 km

s ; v ≈ 7 km
s

5.7.5 m = Mg√
2cPT
µ

≈ 3.8 t
s .

5.7.6 v = { 2γRT1

µ(γ−1) [1− (P2

P1
)

(γ−1)
γ ]} 1

2 .

5.7.7 T ≈ 120 K, v ≈ 1370 m
s

5.7.8 T ≈ 193 K . P ≈ 0.33 MPa

5.7.9 v′ = v 1
1+γ [1−

P
ρv2 +

√
(γ + P

ρv2 )
2 − 2(γ2−1)q

ρSv3 ]

F = ρSv(v′ − v), where ρ = Pµ
(RT ) .
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5.8 Probability of thermodynamic
state

5.8.1 a . t = τ
4 . b. t =

τ
8 . c. t =

τ
2N

5.8.2 a. p1 = 1
4 , p2 = 1

2 . b. p = 1
2 . c. p2 = 3

8 , p0 = 1
8 .

5.8.3 a. p = (1− V
V0
)N b. V = V0(1− 10

−2
N ).

5.8.4 p ∼ 10−1015 , V ∼ 10−17 − 10−18 cm3.

5.8.5 a. In the figure, the motion along the trajec-
tory is expanded by mirror images into motion
between two parallel lines. The corresponding
points of the trajectories are marked with the
same letters. It follows from this figure:
v′ ≈ x

2A′B′ v ≈ v∆
√
2;∆ ≈ 1

2 [tg(
π
4 +∆)− 1] = k

2n ,

where k and nare integers without a common di-
visor
tg(π4 +∆)− 1 = k

n ;h1 ≈ 2a∆
k , h2 = 0.

b. It is unlikely that tg(π4 +∆)−1 is exactly equal
to a simple fraction such as 0.03, because there
can be any number in the vicinity of this number,
e.g., numbers like 0, 03 +

√
2
n , n being an integer,

which are as small as 0.03. These numbers are
called irrational, and mathematics proves that
the set of these numbers is more is more power-
ful than the set of prime fractions. If a number
is irrational, then the trajectory is not closed.
p = S

a2

c. p = V
a3 .

5.8.6 a. v′ ≈ v∆
√
1− 1

m2 ; tgα = m, tan(α + ∆) − 1 =
k
n , h1 = 2α∆

k , h2 = 0. b. p = S
a2 . c. p = V

a3

5.8.7 τ ≈ R
v∆ ; τ ′ ∼ τH

R at H ≫ R, τ ′ ∼ τR
H at H ≪ R

and τ ′ ∼ τ at H ∼ R

5.8.8

5.8.9 p = ( VV0
)N

5.8.10 A = 200 kJ.

5.8.11

5.8.12 (1− V 2

V 2
0
)N times.

5.8.13 104,8·10
22 times.

5.8.14 a. The probability of states that differ only in
potential energy, are the same. Figures a and
c show two states of an ideal gas half-full of
the same volume and have the same probabil-
ity. Moving from state a to state c at constant
temperature, using two pistons as shown in the
figures. The change in the logarithm of the state

probability at this transition ∆S = NU
T +Nklnc,

where N is the number of gas molecules, c is
the ratio of gas pressure values above and be-
low the dashed line, separating regions of dif-
ferent potentials. But ∆S is zero. Therefore,
c = exp(−UkT ).

5.8.15 Unreal.

5.8.16 Unreal. Real

5.9 The second beginning of thermo-
dynamics

5.9.1

5.9.2 ∆S = 1.2 kJ
K

5.9.3 ∆S = 7 kJ
K

5.9.4 a, b. ∆S = (mµ )Rln2.

5.9.5 a− c. ∆S = m
µ Rln{V2

V1
(T2

T1
)

3
2 }

5.9.6 ∆S ≈ 20 J
K

5.9.7 ∆S ≈ 60 J
K

5.9.8 ∆S = (PVT )ln2

5.9.9 a.∆S = −Q1

T1
+ Q2

T2
= 5

2R
(T1−T2)

2

T1T2
where −Q1 and

Q2 are the amount of heat transferred to the
heater and the cooler during one cycle.
b. ∆S = R

2 [
3P2V2

P1V1
+ 3P1V1

P2V2
+ 2V2

V1
+ 2V1

V2
− 10].

5.9.10 a. η = 1− (V1

V2
)

2
3 . b. η =

2(T2−T1)ln(
P2
P1

)

5(T2−T1)+2T2ln(
P2
P1

)
.

5.9.11 It doesn’t exist.

5.9.12 We can.

5.9.13 η ≈ 10, 8%, η = 30%.

5.9.14 For any thermal cyclic process
−Qh
Th

+ Qr
Tr

> 0, Qh −Qr = A, η = A
Qh

,

where Th and Tr are the temperatures of the
heater and refrigerators, respectively, −Qh and
Qr are the amount of heat transferred to the
heater and refrigerator during one cycle, A is
the work per cycle. From the above relations
it follows, that the efficiency factor η ≤ (Th−Tr)

Tr
,

wherein the sign of equality takes place in case
Qh
Th
− Qr

Tr
= 0, i.e. when entropy does not change.

5.9.15 During detonation, the entropy of the system in-
creases.

5.9.16 A ≈ 33 kJ.
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5.9.17 A ≈ 3 · 1016 J. t ≈ 60 days

5.9.18 A = C[T − T0 − T0ln(
T
T0
)].

5.9.19 A = C1T1 +C2T2 − (C1 +C2)T
C1

(C1+C2
)

1 T
C2

(C1+C2)

2 ≈
32 kJ

5.9.20 Increase

5.9.21 Qmax = A(1−η)
η .

5.9.22 N = 0, 29 MW , N ′ = 0, 11 W.

5.9.23 m = 5 kg.

5.9.24 N = 138 W

5.9.25 A = 46 kJ

5.9.26 No. The process lasts until there is saturation
of the environment with water vapor.

5.10 Phase transitions

5.10.1 t ≈ 1 h.

5.10.2 No

5.10.3 In a vessel without a lid, water evaporates from
the surface, which requires additional heat.

5.10.4 ∆p ≈ 10−8 Pa

5.10.5 13% water

5.10.6 A mixture of 100.5 g water and 30.5 g ice at 0 ◦C.

5.10.7 m = 98 g
s .

5.10.8 x ≈ 0, 11 m.

5.10.9 a. As long as there is water in the pot, the bottom
temperature is about 100◦C. b. You can.

5.10.10

5.10.11 A layer of steam forms between the surface of the
hot plate and the drop, which makes it difficult
to bring heat to the water.

5.10.12 The low air temperature in the Dewar vial is
maintained by boiling air, and the low temper-
ature of solid carbon dioxide by its strong evap-
oration from the surface.

5.10.13 There is evaporation of ice in the dry air.

5.10.14 v ≈ 8 m
s .

5.10.15 Carbon tetrachloride boils off 25 times faster.

5.10.16 To prevent condensation of steam.

5.10.17 You can’t.

5.10.18 At the critical temperature, liquid and vapor are
indistinguishable.

5.10.19 Faster.

5.10.20 m = 11, 7 g

5.10.21 P = 0.2 MPa, A = 35 kJ.

5.10.22 P = 0, 37P0.

5.10.23 ∆v = mλRT
[P0(µq+RT )] .A = mλRT

(µq+RT ) .

5.10.24 h ≈ 580 m.

5.10.25 5% water.

5.10.26 6% ice.

5.10.27 a . n = exp(mghRT ) = exp( 2mσρr ). b. ∆h = 15 cm

5.10.28 ∆t =
2φλµH2O

PH
(7RP ) = 23◦C

5.10.29 It will be halved.

5.10.30 P = P0(
R
r )

2

5.10.31 P = 2P0(
R
L )

2

5.10.32 a. m
√
n times. b. P = 200P0.

5.10.33 a = 1, 0 m
s2

5.10.34 m1 = 1, 7 kg
s ,m2 = 170 frackgs.

5.10.35 T ≈ 1720 K

5.11 Thermal radiation

5.11.1 a. Φ ≈ 0.2 kW . b. φ = 89 MW
m2 .

5.11.2 T1 ≈ 600 ◦C, T2 ≈ 2000 ◦C.

5.11.3 w = 7.56 · 10−16T 4 J
m3

5.11.4

5.11.5 a. Quartz, unlike steel, almost does not ab-
sorb visible light, so when heated, it emits much
weaker radiation in the visible region.
b. Unlike black coal, which almost completely
absorbs visible light, white chalk reflects that
light. Therefore, when heated, chalk emits
much less light and looks darker on the back-
ground of strongly emitting coal.

5.11.6 a. T = T0
4√2

. b. T =
4

√
(T 4

1 +T
4
2 )

2 .

5.11.7 a.T = T0

√
ε( R2L )

2. b . φ = 1.7 kW
m2
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5.11.8 a. T = 200, 70,−35◦C. b. Φ ≈ 4 ·1026 W . c.T = 140
◦C

5.11.9 T = 2, 4 K

5.11.10 T = 20◦C

5.11.11 Φ = ε1ε2
ε1+ε2−ε1ε2σS(T

4
1 − T 4

2 )

5.11.12 a. T ′ = T
4√2

. b. n = 32

5.11.13 T = T0
4
√

6,5+ 4R
r

5.11.14 T = 4

√
T 4
1 − T 4

2 + [T1 +
ε

2−ε (T
4
1 − T 4

2 )
h
χ ]

4.

5.11.15

5.11.16 a. a = SΦ
2πR2mc . b. v = ( 1

R1
− 1

R2
)
√
SΦπmc

5.11.17 a. The tail of the comet is affected by the pres-
sure of the sun’s rays. b . r ≈ 1 µm.

6 ELECTROSTATICS

6.1 Coulomb’s law. Electric field
strength

6.1.1 a.F = 1.8 · 104 N . b. F = 2.3 · 10−8 N . 4.17 · 1042
times.

6.1.2 q ≈ 1.05 · 10−5 Cl ≈ 3.16 · 104 CGS.

6.1.3 a. E = 1 V
m = 3.3 ·10−5 CGS. b. E = 3 ·105 V

m = 10
CGS.

6.1.4 At a distance of 1mE1 = 9·1010 V
m = 3·106 CGS;

at a distance of 20 m E2 = 2.25 · 108 V
m = 7.5 · 103

CGS.

For a charge of 0.001 Cl, F1 = 9 · 107 N, F2 =
2.25 · 105 N ;

per 1, 000 CGS chargeF1 = 3 · 109 dyn, F2 = 7.5 ·
106 dyn

6.1.5 F = 2.56 · 109N

6.1.6 q = 3.5 · 103 Cl

6.1.7 T12 = q1(4q2+q3)
16πε0l2

, T23 = q3(4q2+q1)
16πε0l2

6.1.8 At a distance x =
l
√
q1

(
√
q1+

√
q2)

from the charge q1.
Yes. No.

6.1.9 q = l
√
8πε0mg

6.1.10 T = 1
4πε0l2

(Q2 − q2

3
√
3
).

6.1.11 β = 2arctg( qQ )
2
3 , α = π − β.

6.1.12 r = 1, 4 · 10−8 cm

6.1.13 ω = q
√

(3
√
2−4)

(8πε0ml3)
.

6.1.14 qmin = 32πε0mgR
2

Q

6.1.15 k = q2
√
a2+l2

32πε0a3(
√
a2+l2−l)

6.1.16 T = q2

8πε0l2
( 94 +

√
3
3 )

6.1.17 E1 = 0, E2 = Qh

[(4πε0(R2+h2)
3
2 ]
.

6.1.18 E = ρl
[4πε0x(l+x)]

.

6.1.19 a) E = σ
(6ε0)

; b) E = (σ1−σ2)
(4ε0)

; c) E = σ
(2ε0)

;

d) E =

√
σ2
1+σ

2
2+σ

2
3−σ1σ2−σ2σ3−σ1σ3

(3ε0)
; e) E =

ρh(1−cosα)
(2ε0)

; f)E =
√
3lρ

(12ε0)
.

6.1.20 b. Yes

6.1.21 a. q =
√
10Q. b. q = 9Q.

6.2 The flux of electric field strength.
Gauss’ theorem

6.2.1 a. Φ = El2

2 . b. Φ = −Eh2,Φ = Eh2.

6.2.2 Φ = E cosα · π(R2 − r2).

6.2.3

6.2.4 F = σΦ

6.2.5 a.F1 = F2 = qσ
(2ε0)

, E = σ
(2ε0)

. b. F = σq
(4ε0)

.

6.2.6 a) E = 0 at r < R,E = Q
(4ε0r2)

at r > R;
b) E = ρ

(2πε0r)
; c) E = σ

(2ε0)
; d) E = ρr

(3ε0)
at

r ≤ R;E = ρR3

(3ε0r2)
at r ≥ R; e) E = ρr

(2ε0)
at

r ≤ R;E = R;E = ρR2

(2ε0r)
at r ≥ R; f) E = ρx

ε0
at

x ≤ h
2 (x is the distance from the central plane

of the plate); E = ρh
(2ε0)

at x ≥ h
2 .

6.2.7 a) ρ = 2E0ε0
r ; b) ρ = E0ε0

r .

6.2.8 The force acting on the selected face of the cube,
F = σ

∫
Ends, where

∫
Ends is the flux through

this face the electric field strength created by
other five faces. As a closed surface, let us con-
struct a cube slightly larger than the given one.
Then all six charged faces give a flux of electric
field strength through all six sides of the con-
structed surface Φ = q

ε0
= 6σl2

ε0
and through one

face Φ0 = σl2

ε0
. But

Φ′ =
∫
Ends+

σl2

2ε0
,
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therefore,∫
Ends = σl2

ε0
− σl2

2ε0
= σl2

2ε0
.

So, the force F = σ2l2

(2ε0)
. Similarly, for the tetra-

hedron we obtain
F =

√
3 σ

2l2

(8ε0)
.

6.2.9 Between planes E1 = σ
ε0
, E2 = 0. Outside the

planes E′
1 = 0, E′

2 = σ
ε0

.

6.2.10 E1 = ( σε0 )sin(
α
2 ), E2 = ( σε0 ) cos(

α
2 ).

6.2.11 Emax = ρh
ε0

6.2.12 EA = ρh
(6ε0)

, EB = ρh
(3ε0)

, E(r) =
ρr

(3ε0)
.

6.2.13 At any point inside the cavity the field strength
is directed along the line,connecting the centers
of the ball and the cavity, and E = ρl

(3ε0)
.

Outside the cavity E = ρ
3ε0

[x+ r3

(l−x)2 ] at 0 < x <

l − r;E = ρ3

ε0
[x − r3

(x−l)2 ] at l + r < x < R;E =
ρ3

ε0
[R2x2 − r2

(x−l)2 ] at x > R.

6.2.14 a. E = ρl
(3ε0)

. b. σ = 3ε0E cosα, where α is the
angle between the field direction and the radius
drawn to a point on the sphere. σmax = 3ε0E.

6.3 Electric field potential. Conduc-
tors in a constant electric field

6.3.1 a.v = 107 m
s . b.v = 1, 25 · 106 m

s

6.3.2 a.∆φ = 850 V . v =
√
3 · 107 m

s . b.v = 8.8 · 106 m
s

6.3.3 φ = 2, 7 · 108 B.

6.3.4 φ =
√
2q

(πε0l)

6.3.5 ∆φ ≈ −11, 9 B.

6.3.6 φ = 13, 5 kV = 45 CGS.

6.3.7 φ = Q
(4πε0R) . No. Yes.

6.3.8

6.3.9

6.3.10 b.Emax = nQ
(4πε0R2) , Emin = Q

(4πε0R2) . c.E = ρ(2πb).

6.3.11 σ′
1 = (σ1+σ2)

2 , σ′′
1 = (σ1−σ2)

2 , σ′
2 = − (σ1−σ2)

2 , σ′′
2 =

(σ1+σ2)
2 .

6.3.12 a.∆φ = 37.7 GHS = 11.3 kV. b. φ = 18.8 GHS
= 5.65 kV.

6.3.13 φ3 − φ1 = [(σ3−σ1)(h1+h2)+σ2(h1−h2)]
(2ε0)

.

6.3.14 E12 = φ
a ;E23 = φ

b .

6.3.15 a. The field strength near the upper plate
Eu = σb

[ε0(a+b)]
, near theof the lower plate En =

σa
[ε0(a+b)]

. Accordingly, the surface density σv =

− σb
(a+b) , σn = − σa

(a+b) .

b. qa = − qb
(a+b) ; qb = −

qa
(a+b) .

6.3.16 Q′ = −Q, σ = Q
(4πR2) , E = (Q+q)

(4πε0L2) . No. No.

6.3.17 The surface of the cavity has a charge −q,
and the surface of the conductor has a charge
q,which (except for the area near the ends of the
conductor) is uniformly distributed over thesur-
face of the conductor. Therefore, E = 0 at 0 <
x < r,E ≈ q

(2πε0xL)
at r < x < R,E = 0 at

x > R;x is the distance from the axis.

6.3.18 The surface charge density at the corresponding
parts of the conductor surface will remain the
same.

6.3.19 See Fig.

6.3.20 φ1 = q
(4πε0r)

, φ2 = q
(8πε0r)

, φ3 = 0.

6.3.21 qr = −8πε0rφ, q2r = 16πε0rφ

6.3.22 φ1 = φ (R2−R1)
R2

, φ2 = φR1

R2
.

6.3.23 E = 0, φ = 0 for r > R2;E = q
4πε0r2

, φ = q
4πε0

( 1r −
1
R2

) at R1 < r < R2;E = 0, φ = 1
4πε0

( 1
R1
− 1

R2
at

r < R1.

6.3.24 E = q
4πε0r2

(1− R1

R2
), φ = q

4πε0
(1− R1

R2
) at r > R2; =

− qR1

4πR2r2
, φ = q

4πε0R2
(1− R1

r at R1 < r < R2;E =
0, φ = 0 at r < R1.

6.3.25 E = ρr
3ε0

, φ = ρ
2ε0

(R2 − r2

3 at 0 < r < R;E =
ρR3

3ε0r2
, φ = ρR3

3ε0r
at r > R.

6.3.26 ∆φ = ρR2

(6ε0)
,∆φ = ρR2

(4ε0)
,∆φ = ρh2

(8ε0)
.

6.3.27 φ = ρ
2ε0

(r2lnRr +
r2

2 −
x2

2 at 0 < x < R;φ = ρr2

2ε0
lnRx

at r < x < R.

6.3.28 F = Q2

(16πε0h2) .

6.3.29 F = 3Q2

(32πε0h2) .

6.3.30 NoF = q2(2
√
2−1)

(32πε0l2)
.

6.3.31 φ = q
(4πε0L)

.

6.3.32 Q = − qRL .

6.3.33 Will increase by F = Qq
(4πε0L2) at L > R; will not

change at L < R
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6.3.34

6.3.35 h = 3q2R2

(16π2ε0ρgr6)
, where h is counted from the cen-

ter of the ball.

6.3.36 ′0 = qQ
(Q−q) .

6.3.37

6.3.38

6.3.39 It will increase threefold.

6.3.40 C = 4πε0R

6.4 Capacitors

6.4.1

6.4.2 a. Increased by a factor of four. b. Decreased by
a factor of two; decreased by a factor of n.

6.4.3 a. C = ε0S
d . b. C = 5.3 cm = 5.9pF.

6.4.4 a. Increase one and a half times. b. Increase
1 + S′

(2S) times. c. It will not change.

6.4.5 C = 4πε0
R1R2

R1−R2
.

6.4.6 C = 4πε0[
1
R1
− 1

R2
− d

R0(R0−d) ]
−1.

6.4.7 C = 2πε0l

ln(
R2
R1

)
.

6.4.8 C = ε0al
d (1 + ld

2πR2 ).

6.4.9 a.C = C1C2

(C1+C2)
, C = C1 + C2. b. C0 = 4C

3 . c. C0 =

7C
5 . d. C0 = (

√
5−1)C
2 . e. C0 = 6C

5 .

6.4.10 q = ±ε0SE.

6.4.11 ∆V = a
d+a (V1 + V2).

6.4.12 a. It will increase one and a half times. b. It will
increase two times.

6.4.13 ∆q = qx
d .

6.4.14 V
V0

= (Cd+2ε0S
Cd+ε0S

)4n.

6.4.15 F = 4.4 · 10−2 N . No.

6.4.16 Will increase by a factor of k. Will increase by a
factor of n2times.

6.4.17 a)W = 4.4mJ ; b)W = 2πε0r1r2V
2

(r2−r1) ; c)W = πε0lV
2

[ln(
r2
r1

)
].

6.4.18 a. A = Q2d
(2ε0S)

.b. A = Q2dx
[2ε0a2(a−x)] .c.Aa =

Q2d
(4ε0A) ;Ab =

Q2dx
(2ε0a3)

.

6.5 Electric pressure. Electric field
energy

6.5.1 a.F = σ2S
(2ε0)

.P = σ2

(2ε0)
. b. σ = ε0E.P =

ε0E
2

2 (inSI), P = E2

(8π) (inSGS) .c. P = 4.325 Pa,
σ = 8.85 µCl

m2 .

6.5.2 Will decrease by 1 + Q2

(2P0ε0S2) times.

6.5.3 By Gauss theorem, we determine the surface
charge density at the interface: σ = ε0E. Us-
ing the superposition principle,
E′ − σ

(2ε0)
= E, E′ + σ

(2ε0)
= 2E,

we find the external field strength: E′ = 3E
2 . The

force that acts on the charge falling on the unit of
the surface area of the interface of the fields, i.e.
the pressure from the external P = E′σ = 3ε0E

2

2 .
For fields E and −2E, reasoning similarly, we
obtain σ = −3ε0E and E′ = −E

2 . Thus, in the
second case the surface charge density is three
times is greater, but the external field strength
is three times less. Therefore the electric pres-
sure will be the same: P = E′σ = 3ε0E

2

2 .

6.5.4 P = ρ2h2

(2ε0)
.

6.5.5 P = Q2

(32π2ε0R4) (see solution of Problem 6.5.3).

6.5.6 P = ε0R
2V 2

[2r2(R−r)2] .

6.5.7 ρ = 2πR
√
2ε0P .

6.5.8 a. F1 = qσ
(4ε0)

, F2 =
√
2qσ

(8ε0)
, F3 =

√
3qσ

(16ε0)
;E1 =

σ
(4ε0)

, E2 = 2σ
(8ε0)

, E3 =
√
3σ

(16ε0)
. b. E = Rρ

(4ε0)
.

6.5.9 F = Q2(R2−h2)
(32πε0R4) ; q = −Q

2 .

6.5.10

6.5.11 A = 2EσdS.

6.5.12 a. σ = ε0E,P = ε0E
2

2 . b. A = ε0E
2hS
2 .

6.5.13 A = σ2Sh
(2ε0)

.

6.5.14 A = ε0ShE0(E0 − E).

6.5.15 W = Q2

(8πε0R) (inSI) ;W = Q2

(2R) (inGHS).

6.5.16 r = 1, 4 · 10−15 m

6.5.17 1, 400 times.

6.5.18 W = 3Q2

(20πε0R) .

6.5.19 A = Q2

(8πε0R) .
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6.5.20 A = Q2

8πε0R
(1−N

−2
3 ).

6.5.21 At n times

6.5.22 A3 = 3A;An = n(n−1)
2 A.

6.5.23 A′ = 6A.

6.5.24 A′ =
√
2A.

6.5.25 ∆W = Q2

(4πε0l)

6.5.26 A = (Q1∆φ1+Q2∆φ2)
2 .

6.5.27 a)F = 2Q2dc(d−c)
[ε0a3(2d−c)2] ;

b)F = ε0acV
2

[2d(d−c)] .

6.5.28 A = Q2ab
[2Sε0(a+b)]

.

6.5.29 F = q2Sd
(8π2ε0r5)

.

6.5.30 The field strength of the charges distributed over
a spherical shell, the hole in which is closed with
a cork, in the center of the sphere is zero and can
be represented as
E(0) = Eoftheplug + Eofthespherewithouttheplug = 0.
At ∆≪ r ≪ R the plug field is a dipole field, the
field strength of which at point O is Eofplug(0) =

q′∆
(2πε0R3) . After removal of the plug, redistri-
bution of charges on the remaining part of the
spherical shell at ∆r, will be negligible, and for
estimation it can be assumed that
E(0) = Espherewithoutcork ≈ −Ecork = −q′∆

(2πε0R3) .

By Gauss theorem q′ = −qr2
(4R2) . Taking this into

account we have
E(0) = q2r2∆

(8π0εR5) .

6.6 Electric field in the presence of a
dielectric

6.6.1

6.6.2 p = 7.4 · 10−37 Cl ·m.

6.6.3 pav = 1 · 10−34 Cl ·m.

6.6.4 σpr = ±σ(ε−1)
ε . Field strength:

E = σ
(ε0ε)

- in dielectric,
E = σ

ε0
- in the gap.

The potential difference between the plates V =
( σε0 )(d− h+ h

ε ).

6.6.5 E = E0

√
sin2 + (cos2α)

ε2 .

6.6.6 It will increase ε times.

6.6.7 ε = 2.

6.6.8 q = (ε− 1)CV

6.6.9 ∆V = ε−1
ε+1V.∆V = ε−1

ε(n−1)+1V

6.6.10 ∆V = k(ε−1)V
n

6.6.11 C = ε0(ε1+ε2)S
(2d) .

6.6.12 C = ε0ε1ε2S
ε2d1+ε1d2

; qpol =
ε1−ε2
ε1ε2

q.

6.6.13 C = ε0d2(ε−1)(S2−S1)+ε0εd1S1

d1(d1−d2)+d1d2

6.6.14 ρ = −q
(ε1Sd)

.

6.6.15 a. To the thread. b. F2 = ε1(ε2−1)
ε2(ε1−1)F1. c. F ∼

V2, F ∼ 1
r3 d. In (Rr )

3 times.

6.6.16 F = (ε−1)SQ2

8π2ε0εR5 δ

6.6.17 M = ε0(ε−1)SdE2siN2α
2ε ;A = − ε0(ε−1)SdE2 sin2 α

2ε .

6.6.18 σinternal =
(ε−1)Q
4πεr2 , σexternal =

(ε−1)Q
4πεR2 . See Fig.

6.6.19 .P = (ε−1)Q2

32π2ε0ε
( 1
r4 −

1
R4 ).

6.6.20 F = Q2d
2ε0b

ε−1
[a+x(ε−1)]2

6.6.21 h = ε0(ε−1)V 2

(2ρgd2) .

6.6.22 h = (ε−1)Q2

(2ε0ερgS2)

6.6.23 W = q2

2C
ε−1
ε .

6.6.24 W = V 2C
2 (ε− 1).

6.6.25 V = [ 2W
(ε1−ε2)C

1
2 ].E ∼ 109 V

m .

6.6.26 The dipole moments in the dielectric are ori-
ented in the electric field with a lag; ε = 2.

6.6.27 a. V ′ = ε−1
ε V. b. ∆T ∼ 10−5 K.

6.6.28 r = 0.12 nm.

6.6.29 p = 4πε0r
3E.

6.6.30 ε = 1 + 4πr3n.
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7 MOTION OF CHARGED PAR-
TICLES IN AN ELECTRIC
FIELD

7.1 Motion in a constant electric field

7.1.1 When the initial velocity of a particle is directed
along a straight line of force.

7.1.2 t = 0.56 µs; x = 2.8 m.

7.1.3 E = 2(d−vt)m
(qt2) .

7.1.4 u = v
√
1 + 2qEd

(mv2) , tgβ = tgα
√
1 + 2qEd

(mv2 sin2 α)
.

7.1.5 Twice as much.

7.1.6 K = qEl
[2 cos2 α(tgα+tgβ)] .

7.1.7 N = neUbl2

(2mevd)
.

7.1.8 q = 10−17 Cl.

7.1.9 β = α− arctg

√
1+sin2 α

cosα ; tgβ = cosα
√
1+cos2α−cos2 α

cosα
√
1+cos2α+sin2 α

7.1.10 tgβ = tgα
√

1+2e(φ2−φ1)
(mev2 sin2 α)

7.1.11 V = 19 kV.

7.1.12 V =
(
V0
2 )

ln(
R2
R1

)
.

7.1.13 The velocity will not change, but the time of the
positron’s flight will be longer. The positron can
not reach point B at all if its initial kinetic en-
ergy K0 is less than eφ0.

7.1.14 t′ = t
√
3.

7.1.15
√
n

7.1.16 K → 0 when l → 2R;K = eQ
4πε0

( 1
R + 1

l−R −
4
l ) at

l > 2R. The condition of minimality will be the
arrival of the electron at the midpoint of the in-
terval connecting the centers of the spheres with
zero velocity.

7.1.17 t = 2R
v [1− qQ

(m+M)2πε0RmMv2 ]
−1
2 .

7.1.18 v =
√

qEl
m .

7.1.19 T = 2π
√

ml
(2qE) .

7.1.20 T = 2π
√

ml
(mg+qE) when mg + qE > 0;T =

2π
√

ml√
(mg)2+(qE)2

.

7.1.21 ω =
√

qQ
(2πε0ml2)

.

7.1.22 ω =
√

g
l −

qQ(h+l)
4πε0mh3l at qQ(h+l)

4πε0h3 < mg.

7.1.23 T = 2π( gR + qQ
32πε0mR3 )

−1
2 at qQ

32πε0R2 > −mg.

7.1.24 ∆t = πε0R(mev
2)2

(2e2C) .

7.1.25 α = π
4 ; δ ≈

4K(∆α)2

(eE) .

7.1.26 k = l
(2d) .

7.1.27 b. p1 = q1q2
(2πε0vr)

. c. l = 3, 4 · 10−13 m.

7.1.28 k = 1
(2ε0)

.

7.2 Focusing of charged particles

7.2.1 Increase by half.

7.2.2 x = v π2

√
meε0
(eρ) at x ≤ l;x = l +

v
√

2meε0
eρ ctg( 1v

√
eρ

(2meε0)
R) at x ≥ l.

7.2.3 a. By a factor of k will increase. b. By a factor of
k will decrease.

7.2.4

7.2.5 y = y0f
(x0−f) .

7.2.6 a. Does not depend. b. If the electron moves
along a trajectory close to the straight line
AA′,then the transverse momentum that the
electron will receive in the region of the hole is
close to p ⊥= eΦ

(2πrv) , where Φ = πr2E is the flux
of electric field strength across the surface of a
cylinder of radius r in the region of the hole, v
is the speed of the electron in that region. The
focal distance f = −r·mev

p⊥ = − 2mev
2

(eE) = −4d. (The
minus sign at f means that electron scattering
occurs. scattering of electrons.)

7.2.7 f = 4
3d[(1 + V0

V )(2V0

V + 2
√

V0

V ( V0

V+1 ) − 1)] at V <

8V0. At a distance of 8dV0

V from the first cover at
V > 8V0.

7.2.8 f = d( 4V0

V )2.

7.2.9 A particle of mass m having charge q and fly-
ing with velocity v through a charged ball will
receive from the ball field a transverse momen-
tum p ⊥= q∆q

(2πε0vx)
, where x ≪ R is the mini-

mum distance between the particle and the cen-
ter of the ball, ∆q ≈ πx2ρ2R is the charge of
the area of the sphere cut by a cylinder of radius
x; f = mv

p⊥
1
x = R

2
V0

V .
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7.2.10 At a distance f = 2R(V0

V )2 from the center of the
spheres.

7.2.11 x ≈ 1
( 1
f−

1
L )

, where f = 2R(V0

V )2.

7.2.12 ∆E ⊥= (a−b)2
(16d2)

7.2.13 V = V0

√
2d
l .

7.2.14 f = 4V (2E2−E1)
(E2−E1)2

7.3 Motion in an alternating electric
field

7.3.1 t = 2mel
(eEτ)

7.3.2 a)
√

2eV
me
− e∆V τ

mel
≤ v ≤

√
2eV
me

+ e∆V τ
mel

;

b)v1 =
√

2e(V+∆V )
me

; v2 =
√

2e(V−∆V )
me

at ∆V < V.

7.3.3 νmax ≈ 109 Hz

7.3.4 a. S = Ll
(2V d) . b. S = 0.09 mm

V .

7.3.5 The circle radius is 5 cm.

7.3.6 ν > l
√

2eV
me

.

7.3.7 V = πδντ
(2S) .

7.3.8 e
me

= l2f2

2V (n+ 1
2 )

2 where n is an integer

7.3.9 ∆α = ±arctg{ V0

dω

√
2e
meV

[1− cos(ωl
√

me
2eV )]}.

7.3.10 a.v = ωl
(2πn) . b. ∆b = 4πeV0n

(meω2d) , where n is an inte-
ger.

7.3.11 |umax| = 2eE0

meω
|cosφ|, vav = eE0

meω
cosφ.

7.3.12 K = 0.4 keV.

7.3.13 Because of the departure from the plasma of the
electrons accelerated by the high-frequency elec-
tric plasma’s potential will increase until even
the fastest electrons even the fastest electrons
can no longer escape. V =

2eE2
0

meω2
0
(E0

ω )2.

7.3.14 A = eE0

[me
√

(ω2−ω2
0)

2+4γ2ω2]
.

7.3.15 ε = 1 + 4πnee
2

[me
√

(ω2−ω2
0)

2+4γ2ω2]
.

7.4 Interaction of charged particles

7.4.1 v = e√
4πε0mer

√
γ−1
γ .

7.4.2 v =
√

e2(4+
√
2)

(8πε0mea)
.

7.4.3 vp
ve

=
√

(memp )(4
√
2 + 1) ≈ 0, 01. For the estima-

tion, we can assume that the light positrons will
have time to travel far before the protons move.

7.4.4 rmin = e2

(4πε0mev2)
.

7.4.5 rmin = e2

[4πε0me(v1+v2)2]

7.4.6 v =
√

q1q2(m1+m2)
[2πε0m1m2(R1+R2)]

.

7.4.7 rmin = de2

(e2+4πε0mev2d cosα)
.

7.4.8 α = π
2 .

7.4.9 v =
√

q2

(8πε0md)
.

7.4.10 v = v0

√
1− q2(2

√
2−1)

8πε0mv20d
at mv20

2 ≥ q2(2
√
2−1)

16πε0
. If in-

stead of the dihedral angle we place charge +q
at point A, the electric field in the region out-
side the conductor, and hence the forces do not
change. This allows us to consider the motion of
the system of four charges shown in the figure.

7.4.11 v =
√

4e2r2

[πε0me(4r2+R2)
3
2 ]

7.4.12 Kmin = Ze2

(8πε0r)

7.4.13 Kmin = e2(2−
√
2)

(4πε0r)
.

7.4.14 nmin = (
√
2−1)m
M +

√
2.

7.4.15 vmin = 2v

7.4.16 Impossible

7.4.17 rmin = e2

2πε0mpv2
+
√
ρ2 + ( e2

2πε0mpv2
)2.

7.4.18 m = 4q2(l−r)
rl[u2+v2+2uv cos(α+β)− l2

r2
(u sinα−v sin β)2]

.

7.4.19 t = 2
√
2t0.

7.4.20 v ≥
√

qQ(m+M)
(2πε0RmM) when qQ > 0; any when qQ < 0.

7.4.21 v = mv0
m+M +

√
( MV0

m+M )2 − QqM
2πε0Rm(m+M)

7.4.22 v =
√

3qQ(m+M)
(4πε0mMR) at qQ > 0; v = 0 at qQ ≤ 0.

7.4.23 vc =
√

q2

(6πε0ml)
; vkr =

√
q2

(24πε0ml)
.
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7.4.24 v =
√

q2m(2R−l)
[2πε0RlM(M+2m)] .

7.4.25 x = R
2 (

Q2

4πε0µmgR2 − 1), vmax =
√
µgR( Q√

4πε0µmgR2
− 1).

7.4.26 h = h0 cos2 α
mg [ q2

8πε0(H−h0)H sinα (1−µctgα)−mg(1−
µtgα)]

7.4.27 W = 3q2

(32πε0l)
.

7.4.28 k = [ q2

(2πε0l1l2)
](l1 + l2 + 2l0).

7.4.29 vmax = v
√

1+q2

(4πε0Rmv2)

7.4.30 a)W = 4
3πR

3ρv2 + Q2

4πε0R
+ 4πR2σ(2− 2

2
3 )

b)W = 4
3πR

3ρv2 + Q2+q3

8πε0R
− (Q−q)2

8πε0
3√
2R

+ 4πR2σ(2−
2

2
3 )

7.4.31 The charge will oscillate along the axis of the
cylindrical hole. Its velocity is maximal at the
point O

7.4.32 v =
√
2gh[1− Sσ2

(4ε0mg)
] at mg > Sσ2

(2ε0)
;

v =
√

2ε0mg2h
(σ2S) at mg < Sσ2

(2ε0)
.

7.4.33 v =
√

q2

4πε0m
( 1r −

1
R ).

7.4.34 v = v0

√
1− ρ2l

2πε0mv2
lnR1

R2
.

7.4.35 T = 2π
√

4πε0ml3

(
√
2q2)

.

7.4.36 a) Electrons and ions separate completely. The
electric field of the ions Ei =

neh
(2ε0)

will stop the
electrons after a time

t ≈ 2ε0mev
(e2hn) ; ν ≈

e2hn
(8ε0mev)

.

b) Part of the ions and electrons form charged
areas at the layer boundaries (see figure) whose
electric field causes the harmonic motion of the
electrons with period T = 2π

√
e2n

(ε0me)
. There-

fore, the electrons will stop after time t = T
4 =

(π2 )
√

e2n
(ε0me)

, ν = 1
4t .

7.4.37 n = 8 sin2(α2 ).

7.4.38 x =
√

l2 + l20 − l + l0, where l0 = q2

(8πε0µMg) .

8 ELECTRIC CURRENT

8.1 Current. Current density. Cur-
rent in vacuum

8.1.1 a. I ≈ nec
l = 0, 02A. b. I =

√
e4

[16ε0me(πr)3]
=

0, 0012A.

8.1.2 v = Il
q

8.1.3 I = 2ε0Eav = 1, 3 · 10−4 A.

8.1.4

8.1.5 v = 0, 4 cm
s .

8.1.6 j = eν.

8.1.7 j = −eneu.

8.1.8 I = sj sinα = 10 A

8.1.9 t = 8 · 10−6 s

8.1.10 ρ = j
v

8.1.11 E ≈ I
(2πε0vr)

= 6 · 105 V
m ;L ≈ [ 8merv

2

(3eE) ]
1
2 ≈ 0.1 m.

8.1.12 a)ρ = ρ0v0√
v20−

2eEx
me

where x is the distance to the

front grid. b) ρ2 = 2ρ1 at x < x0 =
mev

2
0

(2eE) ; ρ = 0

at x > x0. From the dependence of ρ2 on x the
greatest charge field strength between the grids:

E1 = 1
2ε0

∫ x0

0
ρ2dx =

ρ0mev
2
0

ε0eE
.

The charge field of the beam can be neglected
if E1 ≪ E. When E1 is comparable to E, i.e.
ρ0mev

2
0

(ε0eE) ≈ E, it must be taken into account.
Hence the estimate ρ ≈ eε0E

2

(mev20)
.

8.1.13

8.1.14 The curve T1 corresponds to the iso-temperature
cathode and the curve T3 corresponds to the
high-temperature cathode.

8.1.15 If the field were not close to zero, then all of the
electrons from this boundary would either to-
ward the anode or toward the cathode, depend-
ing on the sign of the field.

8.1.16 ρ = I
S

√
med
2eV

1√
x
= 1, 75 · 10−6 1√

x
Cl
m3 .

When x → 0 the charge density ρ → inf, never-
theless the charge per unit area (σ =

∫ d
0
ρdx), is

limited: σ = 3.5 · 10−6
√
d. Therefore the largest

value of the of the spatial charge field strength
is limited: E′ = σ

(2ε0)
. In this case E′ ≪ V

d and
the action of the spatial charge can be neglected.
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8.1.17 n = 4
3 ; j =

4
9ε0

√
2e
me

V
3
2

d2 , I = jS

8.1.18 The charge density increases by a factor of n,
and the current increases by a factor of n 3

2 times.

8.1.19 j = i
(2πr) .

8.1.20 a.j1 = 2I
4πr2

√
1− l2

r2 ; j2 = 2I
4πr2

l
r where l is the

distance from the middle of the segment AB to
point in which j is determined; r is the distance
from A or B to this point. In the first case the
current is perpendicular to the symmetry plane,
in the second case it lies in it. The total currents
through the plane are I and 0, respectively.

b. j = 2I
4πr2

√
1− h2

r2 where r is the distance from
the source to the point at which j

8.1.21 j = qvl
(2πr3)

8.2 Conductivity. Resistance.
Sources of EMF .

8.2.1 a. λ = e2neτ
me

. b. τ = 2, 4 · 10−15 s.

8.2.2 ∆N
N = 1, 5 · 10−10.

8.2.3 f =
−n2

ev
λ .

8.2.4 I = meωrλs
(eτ) = 1, 7 mA.

8.2.5 The change in the field occurs at the speed of
light.

8.2.6 The ratio χ
λ is almost the same for these met-

als. Theoretical estimate: χ
λ = π2k2T

(3e2) , where k is
Boltzmann constant, T is temperature, e is car-
rier charge

8.2.7 E = j
λ ;V1 = ( jlλ ) cosα;V2 = πjl

(2λ)

8.2.8 σ = ε0j(
1
λ1
− 1

λ2
).

8.2.9 tgα2 = λ2

λ1
tgα1;σ = ε0j cosα1(

πjl
(2λ) )

8.2.10 ρ = ε0j
(λa) .

8.2.11 a .I = Q0

(ε0ρ)
. b. Q = Q0exp[

−t
(ε0ρ)

].

8.2.12

8.2.13 I = λSV
l ;R = l

(λS) .

8.2.14 RI = l
πr2 (

1
λ1

+ 1
λ2
), RII = 1

π (
l1
r21λ1

+ l2
r22λ2

); II =
V
R1

, III =
V
RII

at |r2 − r1| ≪ l1, l2.

8.2.15 R = 0, 0566 Om

8.2.16 R = R0

cos2α .

8.2.17 I = 4πrλV ;R = 1
(4πrλ) .

8.2.18 R = 0, 14 Om

8.2.19

8.2.20 R = 1
4πλ (

1
r1
− 1

r2
); I = λq

εε0

8.2.21 C = εε0
(λR) ; no.

8.2.22 The electrodes should touch the center of the
plate from different sides.

8.2.23 K = 1
2me(

I
eneS

)2 = 2 · 10−15 EV

8.2.24 I = Fl
(qR) ; v = Fl2

(q2R)

8.2.25 a. φ = qvR
l . b. φ = Fl

q .

8.2.26 V = W
e ; Imax = eν. If R < W

e2ν the current does
not change with the load

8.2.27 I = I0(1−
√

V
V0
).

8.2.28 See Fig. W = Ecl

8.2.29 ε = 1, 13 V.

8.2.30 ε = 1.07 V. There is an inflow of heat from the
environment.

8.2.31 ν = 1.4 · 10−2 mol

8.2.32 The capacitor will not discharge completely due
to the appearance of a chemical counter-EMF,
increasing as the number of baths increases.

8.2.33

8.2.34 k = V
(2ε) .

8.3 Electrical circuits

8.3.1 r = 1.5 and 50 kOhm.

8.3.2 r = 20 Ohm

8.3.3 V = 1 kV

8.3.4 In circuits a and e the instruments will show
a decrease in current, in circuit d an increase
in current, in circuit b and f the current does
not change. In circuit c the upper ammeter will
show increasing current, the lower ammeter will
show a decrease in current.

8.3.5 a. ∆V
V = R

(R+r) . b.
∆I
I = r

(R+r) .

8.3.6 IV
I6

= 10
64 , V ≈ 40 V
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8.3.7 100 Ohm.

8.3.8 More

8.3.9 V = 48 V ; I = 15 A

8.3.10 rx = rR2

R1
;saved.

8.3.11 RB = V1

I1
;R = V2V1

(I2V1−I1V2)
;

RA = (V1V3I2−V3V2I1−V2V1I3)
I3(V1I2−V2I1)

.

8.3.12 Here is the part of the circuit that includes the
required resistance. To the nodes A and O we
connect a battery, and a voltmeter to nodes C
and O, and ammeters to nodes C and A, C and
B, and nodes A and B are connected by a wire.
The current through resistance R is ICA + ICB .
Then R = V

(ICA+ICB) , where V is the reading of
the voltmeter.

8.3.13 R = 7 Ohm

8.3.14 a.r =
√
3R. b. r = (

√
3 − 1)R. c. In = I(2 −√

3)n−1 through a resistance of 2R; I ′n = I(2 −√
3)n−1(

√
3−1) through resistanceR,n is the cell

number, R0 = (
√
3 + 1)R.

8.3.15 R1 = 9r;R2 = 10r
9 .

8.3.16 In section a:V = ε−I(r+R); b : V = −ε−I(r+R);
c : V + ε1 + ε2 − I(r1 + r2 +R); d : V = ε1 − ε2 −
I(r1 + r2 +R).

8.3.17 ε = 34.3 V ; r = 1.43 Ohm

8.3.18 Battery with EMF E = 10 V and internal resis-
tance r = 14 Ohm

8.3.19 See Fig.

8.3.20 I = 10 A, r = 20 Ohm; ε = 200 V , r = 20 Ohm.

8.3.21 I = 80 A

8.3.22 I2 = I3R3

R2
; I1 = I3(R2+R3)

R2
;V =

I3(R1R2+R1R3+R2R3)
R2

.

8.3.23 See Fig.

8.3.24

8.3.25 a.V = 5ir;R = 5r
6 ; I = 6i. b. See Fig. I = 7i

2 ;R =
12r
7 ; c. RAB = 13r

7 ;RCD = 5r
7 .

8.3.26 I = 8 A.

8.3.27 a. I = i
2 ;R = r

2 . b. R = r
3 . c. RAB = 2r

3 ;RAC = r

8.3.28 ε = (ε1r2+ε2r1)
(r1+r2)

= 21 V , r = r1r2
(r1+r2)

= 3, 75 Ohm.

8.3.29 See Fig.

8.3.30 It will decrease by a factor of three.

8.3.31 V = 0; I = 0, 75 A.

8.3.32 V = 0, 75 V.

8.3.33 In 12, 54 and 27 min.

8.3.34 N = I2R.

8.3.35 N ′ = N0(N−N0)
N .

8.3.36 R = 9(n− 1)r

8.3.37 r =
√
R1R2.

8.3.38 2 and 100 V ; 20 and 0.1W . The current is almost
unchanged. will not change, but the power will
almost double

8.3.39 S = 42 mm2; approximately 10 times.

8.3.40 N = (E − Ir)I;R = r.

8.3.41 N1 = 125 W ; N2 = 80 W ; N3 = 45 W.

8.3.42 At r = R

8.3.43 Np =
(V−ε)ε

r ;Nt =
(V−ε)2

r .

If ε > V
2 , then the useful power is greater than

the thermal power.

8.3.44 N = 4 W

8.3.45 N = λCV 2

ε0

8.3.46 N = I(mev
2

2e − IR).

8.3.47 q = 4π2ε0a
3eneRv, v ≫ a2e2neR

me
.

8.3.48 T = T0+
R0I

2

(χ−I2R0α)
, χ > I2R0α. When χ < I2R0α

the temperature T increases indefinitely.

8.4 Capacitors and nonlinear ele-
ments in electrical circuits

8.4.1 a. q = 8 · 10−4 Cl. b. V = 60 s. 30, 30, 60 V

8.4.2 V = V0x
(2x−l) ; swap sources

8.4.3 φA = φB + 2(l − x
2 )
√

kx
ε0S

.

8.4.4 .φA − φB = ε( R1

R1+R2
− ( C2

C1+C2
. It should be

measured with an electrostatic voltmeter, q1 =
C1R1ε

(R1+R2)
; q2 = C2R2ε

(R1+R2)
. In this case, the influence

of of these voltmeters on the electrical circuit.

8.4.5 W1 = CV 2

4
R1

R1+R2
;W2 = CV 2

4
R2

R1+R2

8.4.6 W = A− q2

C .

8.4.7 q = Cε;W = Cε2

4 .
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8.4.8 W = C(ε−V0)
2

2 , ε > V0;W = 0, ε < V0.

8.4.9 W = C(V − ε)ε;W = C(V−ε)2
2 .

8.4.10 First the capacitor must be charged from one
cell, then from two cells connected in series, and
so on. Then the energy loss will be 1

n fraction of
the stored energy

8.4.11 Ng = Iq
C > Nk = Iq

(2C) . These quantities dif-
fer from each other because of the work done by
changing the capacitance of the capacitor.

8.4.12 In τ ≈ 10−3RC.

8.4.13 q = C ε1R2+ε2R1

R1+R2
q = C ε1R2+kε2R1

kR1+R2

8.4.14 V = V0Rτ
(rT+Rτ) .

8.4.15 dV
dt = − V

RC ;V = V0exp(
−τ
RC ).

I = V0

R exp( −τ
RC )

8.4.16 R < 40 kOhm

8.4.17 ν = (RClnV−V0

V−V1
)−1.

8.4.18 a. I = qv
d . b. No

8.4.19 I = ε0(ε−1)εav
d .

8.4.20 I = 1
2αR2 + ε

R − [( 1
2αR2 + ε

R )
2 − ε2

R2 ]
1
2

8.4.21 On the volt-ampere characteristic draw the line
I = (ε−V )

R ; the point of their intersection gives
gives a current of 2 mA. Drawing the corre-
sponding straight lines through the ends of the
rectilinear of the characteristic line, we find that
at R > 0.3 kOhm and R > 3 kOhm the diode
stops working at the straight line part of the
volt-ampere characteristic.

9 PERMANENT MAGNETIC
FIELD

9.1 Induction of a magnetic field. The
effect of a magnetic field on a cur-
rent

9.1.1 B = 100 T l

9.1.2 B = 20 T l

9.1.3 a) F1 = F I1
I

√
1 + L2

l2 − 2Ll cosφ. b)F2 = 2F RI2
lI

9.1.4 ∆h = aλV B
(bρg) .

9.1.5 α = 45◦

9.1.6 I = mg
2aB ctgα

9.1.7

9.1.8 ω =
√

6BI
m .

9.1.9 tgα = IB
(4ρg)

9.1.10 The current frame will be divided into trape-
zoidal microcircuits with current I as is shown
in the figure. The moment of forces acting on all
microcircuits when ∆h → 0 coincides with the
momentum of forces acting on the frame with
current:
N⃗ ⃗∆h→0 → Σi[∆Mi ×B] = [(Σi∆Mi ×B)] ⃗∆h→0 →
[M⃗ × B⃗]

9.1.11 a. tgα = IB
2ρg . b. tgα = π(4+π)IB

4(1+π)(2+π)ρg .

9.1.12 N = πR2IB(sinα+cosα)
2 .

9.1.13 B = P
(πRIn)

9.1.14 a = 2πRIB sinα
m .

9.1.15 B = F
(RI) .

9.2 The magnetic field of a moving
charge. The induction of the mag-
netic magnetic field of a linear
current

9.2.1 B = µ0ρv
(2πr) , where r is the distance to the thread

9.2.2 B = µ0I
(2πr) , where r is the distance to the wire.

9.2.3 µ = 1, 25.

9.2.4 B = 1, 88 · 10−5 T l

9.2.5 B = µ0I
2π ( 1x + 1

y ).

9.2.6 B = µ0I
2πl sin

α
2 where l is the distance to the in-

tersection point of the wires.

9.2.7 a. B = µ0qv
4πr2 sinα. b. B = µ0Il

4πr2 sinα.

9.2.8

9.2.9 B = µ0I
(2R) ;Bh = µ0IR

2

[2(R2+h2)
3
2 ]
.

9.2.10 n = sin(α2 ).

9.2.11 B = µ0I
2πR (1 +

π
2 )

9.2.12 B = µ0I
(4R) .
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9.2.13 B0 = µ0I(π+1)
2πR

9.2.14 Bh = µ0I
2 [ 1

π2(R2+h2) +
R4

(R2+h2)3 + 2R3

π(R2+h2)
5
2
]
1
2 .

9.2.15 a. I = I0
√
10. b. I = 2I0

√
10.

9.2.16 B = µ0M
(2πh3) .

9.2.17 B =
µ0M
√

1+3 sin2 α

(4πr3) ,M = Ia2

9.2.18 Two flat circuits with current I, having differ-
ent shapes but the same area, break them into
square microcircuits with current as shown in
the figure. The induction of the magnetic field
created by these microcircuits when ∆h→ 0 co-
incides with the induction of the contours inside
which the microcircuits are located. The mag-
netic field of the circuits in question is close to
the field of a single micro-loop at a large distance
multiplied by the number of microcontours in-
side each loop. But this product when ∆h → 0
for each loop tends to the same value since the
number of microcontours depends only on the
area of the contour.

9.2.19 a. In the figure each microcircuit with momen-
tum M0 is surrounded by a circuit with current
I = M0

a2 . At distances much greater than the
distance between neighboring microcircuits, the
field of microcircuits tends to the field of sur-
rounding current I, which coincides with the
field of the current I, flowing along a large cir-
cuit. The magnetic moment of such a loop M =

Ib2 = M0b
2

a2 = nM0.
b. The magnetic field of a thin plate is close to
the magnetic field of the contour current I =
hM , where M is the magnetic moment of a unit
volume of the plate. But the magnetic field in-
duction B is related to I by the relation B =
µ0I

√
8

(πa) . Therefore, M = Bπa
(µ0h

√
8)

.

9.2.20 B = µ0MR2h

[2(R2+l2)
3
2 ]

9.2.21 B = 4, 9 · 10−2 T l.

9.2.22 The vector B0 must be parallel to the surface of
the disk. N = 2πBB0R

3

µ0
.

9.2.23 M =
√

πHF
(2µ0ah2) .

9.3 The magnetic field of a current
distributed over a surface or
space

9.3.1 B = µ0σv
2 .

9.3.2 B = 10−10 T l.

9.3.3 µ0i
2 .

9.3.4 Between planes B = µ0(i1−i2)
2 , outside planes

B = ±µ0(i1+i2)
2 .

9.3.5 F = µ0I
2

(2b) .

9.3.6 a. ∆ = µ0aI
2

(8Eb2) . b. B1 ≈ 10 T l. B2 ≈ 35 T l

9.3.7 B∥ = µ0e0E⊥v = µ0iΩ
(4π) , where E⊥ = σΩ

(4πε0)
is the

component of of electric field of current carriers,
perpendicular to the surface, σ - their surface
density, v - velocity

9.3.8 a. B = µ0i
4 . b. B = µ0i; independent. c. B = µ0aj

(4
√
3)
.

9.3.9 T = µ0nRI
2

2

9.3.10 a. B∥ = µ0iΩ
(4π) , where Ω is the solid angle at which

the surface of the cylinder (see problem 9.3.7).
In the section AA′ the solid angle Ω = 2π, so
B∥ = µ0i

2 .

b. B = 1
2µ0i(1− 1√

1+( Rx1
)2
), B = ⃗x1→inf

1
4µ0i(

R
x1
)2

B = 1
2µ0i(1 +

1√
1+( Rx2

)2
), B = ⃗x2→inf µ0i

9.3.11 a. The magnetic field of a cylinder is composed
of the magnetic fields of thin discs of thickness
∆ into which this cylinder can be divided. The
magnetic field of each disk coincides with the
magnetic field of the current flowing with linear
density M (M is the magnetic moment unit vol-
ume of iron); on the outer surface of the disk (see
the solution of problem 9.2.19).
b. The direction of magnetic field induction in
the center of the cube coincides with the direc-
tion of of magnetization. The modulus of this
vector will be as many times smaller than the
modulus of induction of the magnetic field in-
side the rod as many times 8π

3 (the solid angle
at which the side faces of faces of cube 1 − 4) is
less than 4π, i.e. n = 1.5 times.
c. B = µ0M

sqrt1+4( rl )
2 ;B ⃗( rl )→0

→ µ0M,B ⃗( rl )→inf
→

µ0Ml
2r .

d. B = µ0M(1 − 1√
1+4( rl )

2
);B ⃗( rl )→0

→
2µ0Mr2

l2 , B ⃗( rl )→inf
→ µ0M.

9.3.12 The induction of the magnetic field inside a rect-
angular column will be as many times greater
than B, how many times greater 4π is the solid
angle at which the side faces of the plate can be
seen from its center. B = πaB0

(2
√
2h)

.
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9.3.13 B∥ = 6, 28 · 10−4 T l, B⊥ = 0, 377 T l

9.3.14 ∆B = B0χh
(2R)

9.3.15 a.B = µ0Ix
(2πr2) , 0 < x < r;B = µ0I

(2πx) , x > r.

b. B = µ0xj, x = a
2 ;B = µ0aj

2 , x < a
2 .

9.3.16 Bmax = µ0NI
(2πr) , Bmin = µ0NI

(2πR) .

9.3.17 a. Above the plane B = µ0I
(2πx) , the magnetic field

induction lines coincide with with the field in-
duction lines of an infinite straight wire; below
the plane B = 0.

b. Above plane B = µ0I
(2πx) , below plane B =

µ0(I−I0)
(2πx) .

c. Inside the cable B = µ0I
(2πx) , outside the cable

B = 0.

9.3.18 B = µ0I
2πr tg

β
2 v

9.3.19 See Fig. Bmax = µ0hj
2 .

9.3.20 B = µ0

2 jx, 0 < x < h
2 ;B = µ0

2 hj(1 − h
4x ), x > h

2
where x is the distance to point O.

9.3.21 B = µ0jd
2 .

9.3.22 a. B = µ0ja
2 . b. i = 2B0sin

φ
µ0
, imax = 2B0

µ0
. See Fig.

9.3.23 The component induction of the magnetic field
along the solenoid axis B∥ = µ0nI, and compo-
nent of the magnetic field induction perpendic-
ular to the solenoid axis, B⊥ = µ0nItgα.

9.3.24 To determine the equivalent surface currents
(see the solution of the problem 9.3.11a) the
cylinder should be divided into thin layers, one
of which is shown in the figure. The planes of
the layers should be perpendicular to the direc-
tion of magnetization. B = µ0M

2 when x < r;B =

(µ0M
2 )( rx )

2 at x > r.

9.4 Magnetic flux

9.4.1 a. Φ =
√
3Ba

2

2 b. Φ = BS sinα.

9.4.2 Φ = B · πR2(sin2α− sin2 β)

9.4.3

9.4.4

9.4.5

9.4.6

9.4.7 n = sinα
sinβ , i = ( Bµ0)

cosα(1− tgαctgβ).

9.4.8 B2 = B4 = B1
a1
a2

=
√

B2
1+B

2
3+2B1B3 cosα
2 cos(α2 )

9.4.9 a. Br = 1
2B0

r
x , tgα = 1

2
r
x ; See Fig. b. Br =

1
2nB0

r
x0
( xx0

)n−1, Br =
1
2rB0

δf
δx

9.4.10 Since the magnetic flux of the radial compo-
nent of the field induction outside the cylinder
is conserved, the magnetic field induction will
decrease as αR

r , where r is the distance to the
axis 340 of the cylinder, α = B0R

(2x0)
is the radial

component of the magnetic field induction near
of the cylinder surface.

9.4.11 a. At a sufficiently large distance from the end
of the cylinder the magnetic field induction B0 =
µ0i, and the magnetic flux in section πR2 is equal
to πR2B0. Part of this flux (Φ1) comes out of the
cylinder through section AA′, part (Φ2) - through
the side surface: πR2B0 = Φ1 + Φ2. Hence
Φ2 = πR2B0−Φ1. As in section AA′B∥ = B0

2 (see
solution of problem 9.3.10a), then Φ1 = πR2B∥ =
πR2B0

2 and Φ2 = πR2B0

2 = µ0πiR
2

2 .
b. The force acting on a dedicated section of
one half of the solenoid in the axial direction,
∆Fk = B⊥∆S − nI = nI = ∆Φ, where ∆Φ
is the magnetic flux from the other half of the
solenoid through this section. Therefore, the to-
tal axial force F∥ = nI −Φ, where the total mag-
netic flux from the second half of the solenoid
through the surface of the first half Φ = µ0πnIR

2

2 .
So F∥ = µ0π(nIR)2

2 .

9.4.12 B =
√
2µ0F (πR2).

9.4.13 F = nI(Φ1 − Φ2).

9.4.14 a. L = µ0π(rR)2

l3 . b. L = µ0nπr
2

10 MOTION OF CHARGED
PARTICLES IN COMPLEX
FIELDS

10.1 Motion in a homogeneous mag-
netic field

10.1.1 R = 0, 2 m

10.1.2 R = 0, 68 m

10.1.3 a. ω = qB
m . b. ω = 1, 75 · 1011 s−1

10.1.4 R1

R2
=

√
K1

K2
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10.1.5 t = 2πm
(qB) .

10.1.6 K = 3(eBR)2

(4mp)

10.1.7 sinα = eBl
(mev)

at eB
me
≤ v

l ;α = π at eB
me

> v
l .

10.1.8 x1 = 0.29 m, x2 = 0.41 m, x3 = 0.5 m, x4 = 0.58
m, ∆l = 3.7 mm.

10.1.9 ∆V
V0

< 0, 025

10.1.10 l = 2mv
(qB) ,∆z = mv(δα)2

(4qB)

10.1.11 R = mv sinα
(qB) , h = 2πmv cosα

(qB) .

10.1.12 x = 2πmev
(eB) ,∆y = πmev(δα)

3

(4eB)

10.1.13 See fig. a. B > B0 = 2
√
2mek

(eR) . b. P2 > P1.

10.1.14 B = mev
(eR) +

e
(16πε0vR2) .

10.1.15 ω = ω0 − eB
(2me)

.

10.1.16 V ′ = 2V h
R −Bh

√
2eV
me

.

10.1.17 a.y = meE
eB2lLz

2.

b. y[m] = 1, 1 · 10−4 m−1 · z2

c. y = meE
eB2lLz

√
z2 + ( eBlLmec

)2.

10.1.18 t =
πmp
e2BV ( e

2B2R2

2mp
−K)

10.1.19 V = eB2d2

2π2me
· 1
k2 where k = 1, 2, .... The size of

the spot is determined by the initial velocity of
electrons.

10.1.20 v = mg
qBµ (sinα − µ cosα) at µ ≤ tgα; v = 0 at µ >

tgα

10.1.21 M = 2πR2ρvBR.

10.1.22 v = Q(B2−B1)R
(2m)

10.1.23

10.1.24

10.1.25 M = QR2(B1−B2)
2 . Preserved

10.1.26 The time of motion of the electron through the
highlighted area t = ∆l

v , where v is the projec-
tion of velocity on the plane passing through it
and the axis. The change of momentum in the
direction perpendicular to this plane is ∆p⊥ =
− eB⊥v∆l

v = −eB⊥∆l = − e∆Φ
(2πR) , where ∆Φ is the

magnetic flux through the plot. Change of mo-
mentum ∆M = R∆p⊥ = −( e2π )∆Φ. Therefore,
M2 −M1 = ( e2π )(Φ1 − Φ2).

10.1.27 n =
(1− pB1

B2
)

2 .

10.1.28 r = R
√

B2

B1
.

10.2 Drift motion of particles

10.2.1 vdr =
2v(B1−B2)
[π(B1+B2)]

10.2.2 vdr ≈ αmev
2

(eB0)
.

10.2.3 See Fig.R = 1
B

√
2mEl
q

vdr =
2
√
qlE

2
√
qlB+π

√
mE

10.2.4 v = E
B .

10.2.5 vdr =
E
B

10.2.6 vdr = (EB )sinα

10.2.7

10.2.8 v ≤ eBh
(4me)

or v = V
(hB)

10.2.9 V = eB2d2

(2me)
;V = 3, 5 · 105 V

10.2.10 In a coordinate system moving with drift veloc-
ity E

B , the electron moves on a circle of radiusIn
a coordinate system moving with drift velocity
E/B, the electron moves on a circle of radius mev

′

eB

, where v′ = (v2 + 2EB cosα+ E2

B2 )
1
2

10.2.11 vdr =
F

(qB) .

10.2.12 ve ≈ 8 · 10−7 m
s , vp ≈ 1.5 · 10−3 m

s

11 ELECTROMAGNETIC IN-
DUCTION

11.1 Motion of conductors in a con-
stant magnetic field. Electric mo-
tors

11.1.1 Between the ends of the wings

11.1.2 V = 0.03 V.

11.1.3 V = vbB;σ = ε0vB

11.1.4 v < Ze
(4πε0Br2)

.

11.1.5 V < 7 MV.

11.1.6 E = vB.

11.1.7 B = V
(a2ω) .

11.1.8 a. See Fig. b. M = (a
2b2B2ω
R ) sin2 ωt

11.1.9 W = B2vab
(2ρ) , a < b;W = B2vb2

(2ρ) , a > b.
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11.1.10 W = B2l2vtgα
(2ρ) .

11.1.11 N = (vB)2SL
(4ρ) = 1W.

11.1.12 I = λBvS = 10 kA, V = vBh = 200 V

11.1.13 V = IB
(ρh) .

11.1.14 a.v =
√

2BIlL
m . b. v ≈ 1, 1 · 107 m

s

11.1.15 v =
√
IB(ρb)

11.1.16 It =
2πr20Bv

[R0(r0+vt)]
.

11.1.17 Q = SB
R

11.1.18 B = 1.1 · 10−2 T l

11.1.19 v = gmR
(Bl)2 . In heat.

11.1.20 v(t) = g mR
B2l2 [1− exp(−B

2l2

mR t)]; v(t) = gtm
(m+CB2l2) .

11.1.21 k = I

11.1.22 v = mgR
(B0πa2α)2

.

11.1.23 I = (mgBL ) cosωt.

11.1.24 a.ωinst =
2ε
BL2 (1− 2FR

BεL ), I = 2F
BL . b. ω(t) =

2ε
BL2 [1−

exp(− 3B2L2

4mR t)]

11.1.25 I = ωBr2

(2R) = 0, 4 A.

11.1.26 ω = ω0 − 4Mρ
(a3B2) .

11.1.27 When the rotor stops, the circuit will have max-
imum current flow because there will be no in-
duction EMF

11.1.28 ε = 40 V

11.1.29 f = f0(
ε
ε0
− 2πMRf0

E2
0

).

11.1.30 ε = 120 V . N = 240 W

11.1.31 M = 2εI0ω
ω2

0
.

11.1.32 l =
2V (I1−I2)+R(4I21−I

2
2 )

2ρ(I22−I21 )
, v = I2

2F [2V − I2(2ρl+R)].

11.2 Vortex electric field

11.2.1 Φ = 1 V b, 100 V b, 300 V b

11.2.2 E = αr2

(2l) = 2.5 · 10−5 V
m

11.2.3 In position C, because of the axial symmetry of
the magnetic field, the induction flux through
the ring does not change. Therefore, there is no
EMF in the ring

11.2.4 E1 = 6.4 · 10−6 V
m , E2 = 2.56 · 10−5 V

m

11.2.5 E = µ0αx, where x is the distance from the cen-
ter line

11.2.6 E = (µ0πνn0I0
l0

)x cos(2πνt), where x is the dis-
tance from the coil axis; E = 0.12 V.

11.2.7 a. q = Cφ. b. q1 = q2 = C1C2

C1+C2
φ.

11.2.8 a. q1 = C1
φ
2 , q2 = C2

φ
2 . b. q3 = C3(C2−C1)

C1+C2+C3

φ
2

11.2.9 a. I = 1.44 mA. b. I = 2.5 mA, the current
through the jumper is zero. c. I1 = 2.79 mA,
I2 = 1.77 mA, I3 = 0.96 mA.

11.2.10 b. ∆I = IkT
(RC)

11.2.11 Φmax = V RC = 5 · 10−7 V b.

11.2.12 a. V1 = t
√

2µ0ma3

(hd) , V2 = t3
√

32µ0mb2

(9hd)

b. V1 = (8, 7 · 108 V
s )t, V2 = (1, 2 · 1014 V

s3 )t
3

11.2.13 ε = (πr
2

3 )nB0ω sinωt.

11.2.14 ω = qBl2

(2mr2) . There will be no change in

11.2.15 B(t) = αt(1 + r2

r20)
.

11.2.16 Decreasing. As the magnetic field induction in-
creases, the Lorentz force and the electron ve-
locity increase. But the latter is not fast enough
for the electron to stay on a circle of the same
radius

11.2.17 l = 3r0
4 . By a factor of 100. If the initial radius

r < l, the electron will move along the conver-
gent to the center spiral, at r > l - along the
divergent spiral.

11.2.18 ω = 2σB
[r(ρ+2µ0σ2)] .

11.2.19 a. 2.6 · 1012 times. b. nSr ≈ 7 · 10−14 m2 where
n is the number of turns per unit length of the
solenoid, r is the radius of the solenoid, S is the
wire cross-section.

11.2.20 me.m. = ε0µ0CV 2 = CV 2

c2 where c is the speed of
light

11.2.21 me.m. ≈ 10−27 kg

11.3 Mutual inductance. Conductor
inductance. Transformers

11.3.1 Φ = µ0ISn sinα,L12 = µ0Sn sinα.

11.3.2 L12 = (µ0πr
2n

2 )(cosα+ sinα).
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11.3.3 L12 = µ0πr
2nN

11.3.4 V = µ0πr
2nNωI0 cosωt

11.3.5 L = µ0πr
2n2l. b. Equation of motion of the elec-

tron in the solenoid

e(E − L
l
dI
dt ) = me

dv
dt , l = 2πrN.

But eneSv = I. Therefore, the first equation can
be rewritten as

El = V = (L+ mel
e2neS

)dIdt .

So L1 = L+ mel
e2neS

. Can.

11.3.6 L =
µ0π(r

2
1+r1r2+r

2
2)n

2

3 = 2.3 Gn
m

11.3.7 t = B
√
v

(V
√
µ0)

= 8.9 · 10−2 s.

11.3.8 At h≪ dL = µ0h
d = 6.3 · 10−8 Gn

m .

11.3.9 L = µµ0

2π ln r1r2 .

11.3.10 L = µ0

4π (µ1 + 2µ2ln
r1
r2
)

11.3.11 L = µ0

π lnhr .

11.3.12 Increased by a factor of k

11.3.13 L1 = µ0π(n
2
1r

2
1l1 + n2

2r
2
2l2 + 2n1n2r

2
1l2);L2 =

µ0π(n
2
1r

2
1l1 + n2

2r
2
2l2 − 2n1n2r

2
1l2).

11.3.14 L = L1 + L2 + 2L12

11.3.15 L12 =
√
L1L2.

11.3.16 E2 = (µµ0N1N2S
l )I0ω cosωt.V1 =

(
µµ0N

2
1S

l )I0ω cosωt.

11.3.17 V2 = const

11.3.18

11.3.19

11.3.20

11.3.21 ν = 100 Hz

11.3.22 To reduce Foucault currents

11.3.23

11.3.24 V = 10 V

11.3.25 V = 60 V

11.4 AC electrical circuits

11.4.1 I(t) = εt
L , A = ε2τ2

(2L) . In the energy of the magnetic
field

11.4.2 a) V = α(Rt+ L). b) V = I0(R sinωt+ Lω cosωt)

11.4.3 Wmax = (LI)2

(RT )

11.4.4 I(t) = ( ε0ωL )(1− cosωt).

11.4.5 See Fig.

11.4.6 C(t) = C0[1− t2

(2LC0)
]

11.4.7 Vmax = V0R
√

C
L

11.4.8 a. When open. b. C = 1
[(2πνN)2L] ≈ 1 µF

11.4.9 Imax = ε
√

C
L , qmax = 2εC.

11.4.10 I1max = V
√

CL2

L1(L1+L2)
, I2max = V

√
CL1

L2(L1+L2)

11.4.11 a.I = V0

√
C
L sinω0t, where ω0 = 1√

LC

b. I = V0

L(ω2
0−ω2)

(ω0 sinω0t − ω sinωt); Imax =
V0

L|ω−ω0| ≈ 4, 8 kA

11.4.12 a. See Fig V R = RI0, V L = ωLI0, V C = I0
(ωC) .

b. V0 = I0
√
R2 + [ωL− 1

(ωC) ]
2, φ = arctg

ωL− 1
(ωC)

R .

11.4.13 ε0 = 208 V.

11.4.14 I(t) = ε0(ω
2LC−1)

ωL(2−ω2LC)cosωt

11.4.15 L = 2.8 Gn

11.4.16 V = V0sin(ωt− φ), where φ = arctg 2ωC0R0

(ωCR)2−1 .

11.4.17 a. IL = 0, IR = ( ε0R ) sinωt,N = 200 W

b. IR = ( ε0R ) sinωt, IC = −ε0ωC(sinωt +
cosωt), N = 200 W

11.4.18 L = 0.16 Gn

11.4.19 See Fig.

11.4.20 If VC0
and VC are the potential differences re-

spectively on the capacitor C0 and C, and I is
the current in the circuit, then VC0−VC = LdI

dt =

V0 cosωt, ω =
√

LCC0

(C+C0)
. But (V0−VC0

)C0 = VCC.
From these equations we find
VC = (1 + C

C0
)−1V0(1− cosωt)

Therefore, at V < 2V0(1 +
C
C0

)−1 the breakdown
occurs after time
τ = 1

ωarccos[1− (1 + C
C0

) VV0
]

and at V > 2V0(1+
C
C0

)−1 the capacitor of capac-
ity C does not break through
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11.4.21 b. If I1 and I2 are currents through the induc-
tance coils L1 and L2, and ω = 1√

(L1+L2)C
and

I0 = V0

(ωL1)
, then L1I1 + L2I2 = LI0, I1 − I2 =

I0 cosωt. From these equations we find

I2 = L1

L1+L2
(1 + cosωt)I0, Imax = 2V0

√
C

L1+L2

11.4.22 a. L1I1 + L2I2 = L1I = (L1 + L2)I0, where I0
is the steady-state current through the coils of
inductors L1 and L2.
W = 1

2L1I
2 − 1

2 (L1 + L2)I
2
0 = L1L2

2(L1+L2)
I2.

b. I1 to I1 − 2(I1−I2)
(1+

L1
L2

)
; I2 to I2 +

2(I1−I2)
(1+

L2
L1

)
.

11.4.23 R = 1, 4 · 10−3 Ohm

11.4.24 W =
(L+CR2)(I21−I

2
2 )

2 .

11.4.25 φ = 2arcsin(ω
√

LC
2 ).v = ωl

φ at ω < 2√
LC

; v =
l√
LC

at ω ≪ 1√
LC

.

11.5 Conservation of magnetic flux.
Superconductors in a magnetic
field

11.5.1

11.5.2 B = B0(
r0
r )

2

11.5.3 It will be halved.

11.5.4 One and a half times

11.5.5 Reduced by a factor of three

11.5.6 Only the axial component of the magnetic field
induction changes. In the region of the external
field it is equal to ( 12 )B0 cosα, and outside this
field it is equal to −( 12 )B0 cosα.

11.5.7 I = I0 − (πr
2

L )B0 cosα.

11.5.8 I0 = πD2B
(4L) .

11.5.9 Outside the steel cylinder the induction will de-
crease by B0

2 , inside it will increase by B0

2 .

11.5.10 See Fig. x - coordinate of the front end of the
rod, counted from the beginning of the coil.
a. Imax = I0

1− σ
S
. b. Imax = I0

1− σl
(Sh)

.

11.5.11 L = µ0πr
2(1− r2

R2 )
N2

l

11.5.12 I = a
√

2ρCugh
µ0

= 380 A, ρCu is the density of
copper.

11.5.13 The magnetic field above the superconducting
plane AA′ coincides with the magnetic field,
which is the result of superposing the magnetic
fields of a straight wire with current I and a wire
with current (−I), symmetrically located under
the AA′ plane. There is no magnetic field above
the AA′ plane. Therefore, P = µ0I

2

[2(πh)2] . The in-
teraction with the superconducting plane of a
long wire with current I is equivalent to the in-
teraction of two wires that are 2h apart, with
currents flowing in opposite directions. There-
fore f = µ0I

2

(4πh) .

11.5.14 v = V
(πr2nB) = 2 km

s

11.5.15

11.5.16 From the laws of conservation of energy and
magnetic flux in the solenoid follows
1

2µ0
B2

0(W−w)+ 1
2mv20 = 1

2µ0
B2W+ 1

2mv2, B0(W−
w) = BW

where B0 = µ0NI
L and B are the maximum mag-

netic field induction in the solenoid before and
after the projectile, W = πR2L and w = πr2l are
the volumes of solenoid and projectile. From the
given equations we obtain

∆v =
√
v20 + πµ0(

NI
L )2r2l[1− r2l

(R2L) ]− v0

11.5.17 v = NIr
√

πµ0

(12lm) .

11.5.18 When entering a magnetic field in a supercon-
ducting rod, a current arises that creates a field
inside the rod, the induction of which is equal in
modulo to the induction of the external field and
is directed in the opposite direction to it. The
work to create this current A = B2Sl

(2µ0)
is equal to

the change in kinetic energy of the rod. Hence,
vmin = B

√
Sl

(µ0m) .

11.5.19 The magnetic flux in any cross section of the tube
during the projectile’s flight does not change:
πr21B = π(r21 − r20)B1, πr

2
2B = π(r22 − r20)B2.

Using these equations and the law of conserva-
tion of energy gives

∆K = ( lB
2

2µ0
)[

r41
(r21−r20)

− r42
(r22−r20)

].

11.5.20 v1 = v, v2 = 3v if mv2 < B2lSs2

[4µ0(2S−s)(S−s)] ; v1 =

3v, v2 = v if mv2 > B2lSs2

[4µ0(2S−s)(S−s) ].

11.5.21 v′1 = v1, v
′
2 = v2 if (v2−v1)2

1
m1

+ 1
m2

> B2lSs2

2µ0(2S−s)(S−s)

v′1 = 2m2v2+(m1−m2)v1
m1+m2

, v′2 = 2m1v1+(m2−m1)v2
m1+m2

,

if (v2−v1)2
1
m1

+ 1
m2

< B2Ss2

2µ0(2S−s)(S−s)
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11.5.22

11.5.23 T ′ = T√
1+B2r4T2

(4LJ)

11.5.24 ω = 2i
√

µ0ah
[m(l−d)]

11.5.25 v = v0(1 +
√
1 +

LxI20
(mv20)

)

11.5.26 B = B0 +
2µ0ρv

2∆
(Br0)

≈ 500 T l, P = B2(2µ0) ≈ 1011

Pa

11.5.27 Equation of motion of the electron in the tube

me
dv
dt = eE = e r2

d(B−B′)
dt ,

where B and B′ are the inductions of the exter-
nal magnetic field and the field created by the
moving electrons. Therefore, mev = er(B−B′)

2 .
On the other hand, enevh = j, B′ = µ0j, where
j is the linear current density. From the last
equations we get j = e2hB

(2me+e2rµ0neh)
and then

B −B′ = meB
me+e2rµ0neh

2

= 5.7 · 10−5 T l.

11.5.28 B = 2meω
e

11.6 Relation of the alternating elec-
tric field to the magnetic field

11.6.1 CB = 1
c
dN
dt (in GHS); CB = µ0ε0

dN
dt (in SI). CB

is the circulating magnetic field induction, N is
the electric displacement flux, c is the speed of
light, ε0 and µ0 are the electric and magnetic
constants.

11.6.2 a. dN
dt = vlE,CB = µ0ε0vlE,CB = µ0ε0

dN
dt (in

SI), CB = 1
c
dN
dt (in GHS)

11.6.3 N = 9 · 105 V ·m

11.6.4 According to Gauss’s law the electric displace-
ment flux inside the capacitor N = Q

ε0
, where

Q is the charge of the capacitor and the rate of
change of flux dN

dt = 1
ε0

dQ
dt = 1

ε0
I, where I is the

current in the circuit. Therefore, the circulation
of magnetic field induction CB = µ0ε0

DN
dt = µ0I

coincides with the circulation of magnetic field
induction that would be created by the current
I.

11.6.5 B = 2, 5 · 10−6 T l

11.6.6 n = 2πNr
L

11.6.7 B = µ0ε0Ev cosα

11.6.8 σ = B
(µ0v

)

11.6.9 a. B = µ0ε0vV
h inside conductor, B = −µ0ε0vV

h
between conductor and capacitor’s coils.

b. Will decrease by a factor of (ε+1)
(ε−1) .

11.6.10 See Fig. In the first case, because of the po-
larization current flowing through the circuit
abb′a′, the circulation of the magnetic field in-
duction vector through this contour will be ε
times greater than in the second case. There-
fore, the motion of the medium together with the
contour reduces the induction of the magnetic
field by a factor ε

11.6.11 a. The induction of the magnetic field caused by
an alternating electric field, B1 = πr2αµ0ε0

(2πr) =
µ0ε0αr

2 .The induction of the magnetic field
caused by the polarization current of the dielec-
tric is ε− 1 times greater:B2 = (ε− 1)B1. There-
fore B = B1 +B2 = εB1 = µ0ε0εαr

2 .

b. B1 = µ0εε0αV r
2h , B2 = µ0ε0αV

2hr0
[r2(ε− 1) + r20].

11.6.12 See Fig. B0 = µ0Ir
(2πr20)

. When x < r the value
of B = µ0Ix

2πr20
, at r0 > r > r the value B =

µ0Ir
2(r20−x

2)
2πx2r0(r0−r2) , for x > r0 the value of B = 0.

12 ELECTROMAGNETIC
WAVES

12.1 Properties, radiation and reflec-
tion of electromagnetic waves

12.1.1 In the direction of the z-axis

12.1.2 a), b) Will be reversed

12.1.3 E = E0 sin[
2π
λ (z − ct)]

12.1.4 E0 =
√

E2
1 + E2

2 + 2E1E2 cos(φ1 − φ2)

φ = ω(t− z
c ) + arctg E1 sinφ1+E2 sinφ2

E1 cosφ1+E2 cosφ2
.

12.1.5 E = 2E0, w = 1
2πE

2
0cos

2[(t− z
c )∆ + φ]

12.1.6 B = E
c (inSI), B = E(inGHS)

12.1.7 B = E
√
e
c (inSI), B = E

√
ε(inGHS).

12.1.8

12.1.9 B = E
√
εµ

c (inSI), B = E
√
εµ(inGHS).

12.1.10 See fig. 1
2 ,

1
2 ; 1.0;

1
2 ,

1
2 .
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12.1.11 a. Two plane waves running in opposite direc-
tions. Wave length d, electric field strength in
the wave E

2 . b. Two plane waves propagating per-
pendicularly to the planes AB and A′B′ in oppo-
site directions. Induction of the electric field in
the wave cB

2

12.1.12 a. Erad =
1
2
v
cE

b. When the sphere stops, all the energy of the
magnetic field will be transferred to the radi-
ation energy. At any point, the magnetic field
induction of a moving charge is equal in GHS
to the electric field strength of the electric field
multiplied by ( vc ) sin θ. Therefore, the energy
transferred to radiation, would be equal to the
electric field energy Q2

(2r) multiplied by ( vc )
2 if

there were no multiplier sin θ. Because of this
multiplier, the energy of the magnetic field de-
creases by another factor and a half. Thus,

W = Q2

3r (
v
c )

2(inGHS),W = Q2

12πε0r
( vc )

2(inSI).

c. The intensity of the ”extra” fields will increase
by a factor of two. Radiated energy is propor-
tional to the square of the intensity. Therefore,
the power of radiation will increase by a factor
of four.

12.1.13 Interference of radiation from different plates.
ν′k = c

dk, ν
′′k ≈ c

d (k + 1
2 ),

k is an integer

12.1.14

12.1.15 a. See Fig. At time t at point A, the electric field
strength radiation Erad = E1+E2, where E1 and
E2 are the field strengths in the wave emitted by
the upper and bottom plates:
E1 = 1

2cEvt− x
c

= 1
2cEa(t − x

c ), E2 =

− 1
2cEv

t− (x+d)
c

= − 1
2cEa(t− x+d

c ).

So, Erad = E1 + E2 = adE
(2c2) .

b. Erad = µ0ci0
2 = i0

(2cε0)
(inSI);Erad =

2πi0
c (inGHS).

c. In the electric field of the wave
E0 sinωt(ω = 2πλ) the speed of the electrons
v = eE0

meω
cosωt.The amplitude of the electric

field strength in the wave emitted by these
electrons, Erad = eE0

meω
nee
2cε0

. Reflection coefficient
k = (EradE0

)2 = [ nee
2x

(4πmeνε0c)
]2.

You can also find the reflection coefficient by de-
termining by how much the wave is attenuated
after passing through the film. In this case sec-
ondary emission of electrons caused by their in-
teraction with the wave already emitted by the

same electrons during interaction with the in-
cident wave. Due to superposition of secondary
radiation coming in the antiphase on the wave
passing through the film the intensity of the
wave decreases, and due to superposition of pri-
mary radiation coming in the shifted phase on
it the intensity of the wave decreases. radia-
tion coming with a phase shift of π

2 , the inten-
sity of the wave increases. The first effect is two
times stronger than the second one. Therefore,
the intensity of the wave after passing through
the film will decrease by an amount equal to the
intensity of the reflected wave

12.1.16 λ = 4 · 10−5 cm

12.1.17 As the film thickness increases, more and more
electrons become involved in the radiation re-
flection. more electrons and the amplitude of the
reflected wave increases linearly (region x < x1).
The linear dependence of the amplitude on the
film thickness is broken when the fraction of re-
flected radiation is large. This is the case when
x > x2.

12.1.18 ∆ ≈ 4πmeνε0c
(nee2)

≈ 10−5 cm.

12.1.19 E = 0, B = 2E
c

12.1.20 λ = 4 · 10−5 cm, x = 2 · 10−5 cm.

12.1.21 j = 2ε0cE, P = 2ε0E
2(inSI); j = cE0

(2π) , P =
E2

(2π )(inGHS)

12.1.22 P = c0E
2
0

12.1.23 P = 2 mPa, P = 0.5 mPa

12.1.24 r ≈ 1µm

12.1.25 See Fig. a) E′ = −E,B′ = B. b) E′ = E

12.1.26 E =
√
Pε0 cos2 α

12.1.27 The force acting on an electron moving along a
metal surface is F = e(E − v

cB) = 0. Therefore
E
B = v

c .

12.1.28 P = 2ε0E
2
0
c+v
c−v (inSI);P = 1

8πE
2
0
c+v
c−v (inGHS).

12.1.29 v = c∆
(2ν0+∆)

12.1.30 v = ck−1
k+1 .

12.1.31 a. The charges induced on the flat boundary cre-
ate an electric field perpendicular to the flat
boundary. Therefore, only the perpendicular
component of electric field strength of the wave
decreases by a factor of ε
b. Induced surface currents create a magnetic
field whose induction is parallel to the surface.

66



Therefore, only the parallel component of the
wave’s magnetic field induction increases by a
factor µ.

12.1.32 On different sides of the interface the electric
field strength and the magnetic field induction
are the same: E − E0 = En, B + B0 = Bn, and
B = E

√
ε1
c , B0 = E0

√
ε1
c , Bn = En

√
ε
c (see Prob-

lem 12.1.7). From these equations it follows that
E0

E =
(
√
ε2−

√
ε1)

(
√
ε2+

√
ε1)

. At √ε1 <
√
ε2 the signs of E0

and E are the same, and for√ε1 >
√
ε2 are oppo-

site. This means that in the first case the phase
of the reflected wave does not change, and in the
second case it changes by π.

12.1.33

12.1.34 See Fig. In the GHS W1 =
7E2

0r
3
0

3 ,W2 = 2E2
0r

3
0.

12.2 Propagation of electromagnetic
waves

12.2.1

12.2.2 The wavelength and speed decrease by a factor
of n, the frequency does not change.

12.2.3

12.2.4 sinαk = kλ
b ,where k is an integer.

12.2.5 In k2 times

12.2.6 ∆α = 13, 5′

12.2.7 l = 2r2

λ , lk = 2r2

[λ(k+1)k] .

12.2.8 The intensity of radiation at other points will in-
crease.

12.2.9 Four times

12.2.10 See Fig.

12.2.11 Increased by a factor of 100 (a) and 324 (b).

12.2.12 c = i
λ , a = A∆Si

(rλ) (multiplying by i means the
phase shift of the secondary wave by π

2 ).

12.2.13 a. R ≈ 1 km. b. R ≈ 1.5 m.

12.2.14 l ≈ 1 m, 0.5 km, 150 km

12.2.15 a. The blue part of the filament spectrum is scat-
tered on the matte surface stronger.
c. Because of fluctuations in atmospheric air
density, the blue part of the spectrum is scat-
tered stronger.

13 GEOMETRIC OPTICS.
PHOTOMETRY. QUANTUM
NATURE OF LIGHT

13.1 Straight-line propagation and re-
flection of light

13.1.1 See Fig.

13.1.2 See Fig

13.1.3 See Fig

13.1.4 An image of the Sun appears on the wall. In the
case where the size of the hole will be is larger
than the image of the Sun on the wall.

13.1.5 The mirror does not ”flip” the image. But an
opaque object appears to us upside down from
right to left, because usually we only see the side
reflected by the mirror if the object is rotated
180◦

13.1.6 H = h
2

13.1.7 Doesn’t change

13.1.8 The double reflection results in an inverted im-
age. From anywhere in the room

13.1.9 Note: Look in the kaleidoscope.

13.1.10 α = 120◦

13.1.11 The course of the rays is shown in the figure.

13.1.12 x = h
2 .

13.1.13 f = R
2 .

13.1.14

13.1.15 f = 36 cm

13.1.16 l = 20 cm.

13.1.17 f = 48 cm.

13.1.18 See Fig

13.1.19 See Fig

13.1.20 A paraboloid of rotation if its axis is parallel to
the rays
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13.2 Refraction of light. Lens formula

13.2.1 α = 48◦

13.2.2 a. h = 4m. b. h = 4 km.

13.2.3 Decrease in L+l
L+ l

n

times

13.2.4 n = 1, 13.

13.2.5 a. αa = 24, 6◦, αc = 49◦, αa, c = 33, 7◦

b. Because of the total internal reflection of the
rays from the bubbles.

13.2.6 No

13.2.7 R = ln
(n−1) .

13.2.8 At α > arc cos( 23 ) the light already at the first
reflection will partially leave the cone. At α <
arc cos( 23 ) the light will first be completely re-
flected from the side surface. After each reflec-
tion the angle between the ray and the normal to
the surface of the cone will diminish by 2α, and
after several reflections the light will leave the
cone through its surface again.

13.2.9 r = R
2

13.2.10 r′ = r
n

13.2.11 sinα = n
kN−1 if n

kN−1 < 1; always passes if n
kN−1 >

1

13.2.12 H = 1
2 (

n0

α−R ).

13.2.13

13.2.14 c. 1
F = (n− 1)( 1

R1
+ 1

R2
)

13.2.15 a. F = 0.25 m, D = 1
F = 4 dpt. b. R = 0.6 m

13.2.16 R = 0.26 m.

13.2.17 a) 1x = 1
nf −

n−1
nr ; b) 1

x = 1
f −

n−1
r .

13.2.18 f = − 1
(n−1)

R2

δ

13.2.19 ∆ = α(n1 − n2)f.

13.2.20 From the part of the lateral surface of the half-
cylinder bounded by the angle α = 2arcsin( 1n )

13.2.21 n = 4
3 .

13.2.22 n = 3
2

13.2.23 y = x
n

13.3 Optical systems

13.3.1 See Figure: a) k = 1
2 ; b) k = 3

2 ; c) k = 1
4 ; d) k = 3

4

13.3.2 See Fig.

13.3.3 f = 20 cm

13.3.4 f = 2f.

13.3.5 v = 2ωf

13.3.6 k = f2

(a−f)2− l2

4

13.3.7 f = 3
7 m

13.3.8 t = 5 ms

13.3.9 df
dt =

vk
1+k ,

db
dt = vk.

13.3.10 To the lens at distance l = r1−r2
D
2 +r2

f

13.3.11 2.3 m < l1 < 3.2 m; 1.6 m < l2 < 8 m.

13.3.12 D1 = −5 Dpts, D2 = 2 Dpts

13.3.13 Severely short-sighted.

13.3.14 The aperture limits the working area of the lens
and allows viewing objects less than 25 cm away
from the eye. The magnification will be k = 25

x ,
where x distance.

13.3.15 f = 2.5 cm

13.3.16 tgα′ = (1− α
f )tgα

13.3.17 k = 2.

13.3.18 a. l1 = f(a−2f)
(a−f) , l2 = a− f. b. f ′ = f

2

13.3.19 f ′ = f1f2
f1+f2

; 1
f ′ =

1
f1

+ 1
f2

13.3.20 f ′ ≈ f
2 + 3l

4 from the first lens

13.3.21 At a distance greater than 10 cm from the near-
est lens

13.3.22 f > 0.6 m

13.3.23 x1 = (d−R)f
d−R−f , x2 = df

d−f when d > R + f ;x = fd
d−F

at f < d < R+ f ; at d < F there is no solution.

13.3.24 n =
(R− l

2 )

(R−l)

13.3.25 f1 = n
2 f ; f2 = n(n0−1)

2(n0−n)f

13.3.26 h2

h1
= (l − f)f

13.3.27 Will increase by a
(a−f) times

13.3.28 At 25l
f1f2

; will decrease by a factor of k.
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13.4 Photometry

13.4.1 h = 1 m

13.4.2 E1 = 130 lx, E2 = 71 lx, E2 = 25 lx

13.4.3 E = 41 lux.

13.4.4 E = I[h2+(h+2x)2]
h2(h+2x)2

13.4.5 See Fig.

13.4.6 At 80, 000 times.

13.4.7 I ′ = I(1−k)
(1+k) .

13.4.8 x ∼ 5 light years.

13.4.9 N ′

N ∼ (Rr )
2 where R is the radius of Venus, and r

is the distance from Earth to Venus.

13.4.10 x ∼ R2

r , where r is the characteristic size of the
car

13.4.11 The illumination of the image will decrease: the
upper part of the arrow-object - slightly more
than twice as much, the lower part slightly less
than twice as much

13.4.12 It will increase twice.

13.4.13 Eleft
Eright

= (R2l )
2

13.4.14 E = E0
a2f2

[xf−(a−x)(x−f)]2 . If x = a
2

13.4.15 L = L0D
2

D2
0

13.4.16 No. Emax = BπD2

R2 .

13.4.17 D = 1.85 m

13.4.18 N ≈ 4x2

d2 ( TTC )
4 ≈ 770, where TC ≈ 6 · 103 K is the

surface temperature of the Sun

13.4.19 It won’t change.

13.4.20 The luminous flux from the star to the eye in-
creases dramatically.

13.4.21 d2 = 5d1
6

13.4.22 t1 = t2(
k1+1
k2+1 )

2.

13.4.23 n ≈ (10πr2L)−1

13.4.24 ρ = 0.2 g
m3

13.4.25 Eight times

13.5 The quantum nature of light

13.5.1 E1 ≈ 10−6 W
m2 , E2 ≈ 4 ·10−6 W

m2 , E3 ≈ 4 ·10−5 W
m2

13.5.2 W = hν − eV0

13.5.3 The velocities of the electron and positron must
be equal in modulo and oppositely directions.
ν = 1.24 · 1020 Hz

13.5.4 a. v = c ε1−ε2ε1+ε2
. b.v = c sin(θ1+θ2)

sinθ1+sin θ2

13.5.5 a. m = (1− cos θ) hν
2

c2δν . b. ∆ν = (1− cos θ) hν′

mec2

13.5.6 a) When a photon is emitted in the direction of
the atom’s motion
mv2

2 = m(v−∆v)2

2 + hv + ε,mv = m(v −∆v) + hv
c

When a photon is emitted in the direction oppo-
site to that of the atom,
mv2

2 = m(v+∆′v)2

2 +hν+ ε,mv = m(v+∆′v)− hν′

c

In (1) and (2) m is the mass of the atom, ∆v and
∆′v are the change in velocity, ε is the change
in the internal energy of the atom, ν′ is the
unknown photon frequency. For ∆v,∆′v ≪ v

it follows from (1) and (2) that ν′ = ν
1− v

c

1+ v
c
. b)

ν′ = ν(1− v
c ).

13.5.7 The attraction of photons to the star.

13.5.8 ∆ν = νγM
(Rc2) , γ is the gravitational constant.

∆νC ≈ 109 Hz. Thermal atoms on the surface
of the Sun affects the frequency of photons emit-
ted by it to a greater than the gravitational field.

13.5.9 f ∼ R2c2

(6γM) ∼ 109 pc

14 SPECIAL THEORY OF REL-
ATIVITY

14.1 Constancy of the speed of light.
Addition of velocities

14.1.1 l = 15 km.

14.1.2 v = 6 · 107 m
s .

14.1.3 tgα = v
c .

14.1.4 tg 1
2∆ = sinα.

( cv+cosα) ≃
v
c sinα = 10−4 sinα, where

v = 30 km
h is the velocity of the Earth relative to

the Sun.
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14.1.5 For station observers, the travel time of the light
signal, which three times traveled distance l be-
tween stations is 3l

c , and the probe travel time
is l

v , v being the speed of the probe. The travel
times of the probe and the signal coincide: 3l

c =
l
v . Therefore, v = c

3 . The probe’s apparatus
records a light signal that moves away from the
probe at speed c. Toward of the probe, a second
station moves towards it with speed v. There-
fore, the time of movement of the light signal
from the first station to the second one measured
by the probe equipment is equal to l′

(c+u) , l
′ is the

distance between the stations measured by the
probe equipment. The time of movement of the
light signal from of the second station to the first
one is equal to l′

(c−u) , and the total time of move-
ment of the light signal is equal to l′

(c+u)+
l′

(c−u)+
l′

(c+u) , and it is equal to the time of movement of
the second station towards the probe l

u . From
the equation l′

(c+u) +
l′

(c−u) +
l′

(c+u) = l′

u we find
that u = c

3 . Thus, the observers of the station
and the instrumentation of the probe will record
the same speed of approach of the probe with the
second station, equal to c

3 .

14.1.6 For an observer at the first station, the travel
time of the light signal to the second station will
be L

(c+u) , L is the distance between the stations
at the time of emission of the signal and the
probe. The signal will return to the first station
for the same time. Therefore, at the moment of
signal reflection from the first station the second
station will move to the distance 2 l

c+u ·u (Fig.a)
and the distance between stations will be equal
to l = L c−u

c+u . Therefore, the third time the signal
will be in transit time l

c+u = L c−u
(c+u)2 , and the

total signal travel time will be equal to L 3c+u
(c+u)2 .

Exactly the same time is in the way of the probe,
the time of movement of which is determined
through the desired velocity of the probe v1 by
the formula L

v1+u
. Equating these times, we ob-

tain the equation L 3c+u
(c+u)2 = L

v1+u
, from which we

determine v1 = c c−u3c+u .

For the observer of the second station, the sig-
nal travel time from the first station to the sec-
ond will be L′

c . During this time the first station
will move by distance L′

c u (Fig.b), and therefore
the signal will return to the first station after
time L′−L′u

c

c+u = L′

c
c−u
c+u . After the reflection from

the first station the signal will return to the sec-
ond station after the same time. Thus, the to-
tal time of motion of the signal will be equal
to L′

c + 2L
′

c
c−u
c+u = L′

c
3c−u
c+u and is equal to the

probe travel time, and the probe velocity is equal
to the distance between the stations at the mo-
ment of the probe launch, divided by this time:
v1 ≃ L′

3c−u
c+u ·L′

c

= c c+u3c−u .

Exactly the same velocities will be recorded by
the probe hardware: the first station will move
away from the probe with velocity c c−u3c+u and the
second station is approaching with speed c c+u3c−u .

14.1.7 The velocities of both signals as observed from
the ship are the same. Therefore, for the space-
craft observer at the time of reflection the sta-
tions were at the same distance, and the signal
from them was reflected simultaneously, as in
this case simultaneously sent signals and will
return after the reflection at the same time. And
what is observed from the stations? The signals
relative to the ship are no longer equal to the
speed of light, but equal to either c+ v, or c− v.
Therefore, the signal cannot be reflected simul-
taneously from the stations at the moment when
the ship was at the same distance from them. In
this case, the signal would travel faster to the
ship from the station to which the ship is mov-
ing. Moreover, signals cannot be reflected at all
at the same time. Indeed, for the simultane-
ously reflected signals to also arrive at the ship
simultaneously, the ship must be at a distance
(c+v)
(c−v) greater from the station it is approach-
ing than the distance to the station it is moving
away from. But then it would have to send sig-
nals to these stations at different times, since
only then would they arrive at these stations at
the same time. Therefore, the stations necessar-
ily observe the arrival of the signals at different
times, and at the moment of reflection the ship
is necessarily is observed at different distances
from the stations. To determine the difference in
the timing of the reflections of the signals from
the stations, we need to find the distance of the
ship from stations x and l − x at the time of the
signals from the ship. These distances are found
from the condition of equality of signal travel
times:
x
c +

x
c−v (1 +

v
c ) =

l−x
c + x

c+v (1−
v
c )

From this equation it follows that x = 1
2 (1 −

v
c )l, l−x = 1

2 (1+
v
c )l. Therefore, the signal travel

times from the ship to the stations are defined by
the formulas
τ1 = x

c = 1
2 (1−

v
c )

l
c , τ2 = l−x

c = 1
2 (1 +

v
c )

l
c

and the difference in signal reflection times by
the formula
τ1 − τ2 = v

c2 l.
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The distance to the stations at the moments of
reflections is easily found through τ1, τ2, x and
l − x : x1 = x2 = 1

2 (1−
v2

c2 )l.

14.1.8 v1 = (1− 1
k )c, v2 = (k−1)(1−β2)

(k−1)(1+β)+1c.

14.1.9 Fig.a shows schematically two consecutive re-
flections of a radar pulse from an object. If τ1
and τ2 are the return times of the pulse, then
(τ1+τ2)

2 time interval between the first and the
second reflection from the object, and c(τ1−τ2)

2
is the path traveled by the object during this
time. So, the velocity of the object is determined
through the time of momentum return by the
formula
v =

c(τ1−τ2)
2

c(τ1+τ2)
2

= ck−1
k+1

where k is the ratio of return times τ1
τ2

. And what
speed of the object will be obtained if we listen to
the general? Fig.b shows the speed of the radar
pulse and the flight times of the pulse from re-
flection to reflection. In this case, the velocity
of the object approaching the station is deter-
mined through the values shown in Fig.b by the
formula
v′ =

(c−u)τ+
1 +(c−u)τ−

2

2(τ−
1 +τ+

2 )

In this formula we have to τ+1,2 and τ−1,2 determine
through the observed values τ1 and τ2. To do
this it is necessary to use the following obvious
relations
τ+1,2 + τ−1,2 = τ1,2,

τ+
1,2

τ−
1,2

= (c−u)
(c+u)

from which it follows that τ±1,2 =
(1∓u

c )τ1,2
2 , and

the velocity

v′ =
(1−u2

c2
)(k−1)c

[k+1−u
c (k−1)] =

(1−u2

c2
)v

(1− vu
c2

) .

This velocity v′ is different from velocity v and
is determined, as the general assumed, not only
by the ratio of times k, but also by the velocity
of the laboratory u relative to the Earth. But
does the The velocity v′ with the approaching
velocity observed from Earth? After all, τ1 and
τ2, the times of momentum return in the labo-
ratory system, do not coincide with the times of
return τ ′1 and τ ′2 observed from the Earth, only
their ratios are the same: τ1 : τ2 = τ ′1 : τ ′2 .
But the equality of these ratios is already suffi-
cient for v′ coincides with the approaching veloc-
ity, observed from the Earth. This result means
that the difference in the approaching velocities
recorded by the laboratory and Earth observers
is due to the fact that these groups record dif-
ferent speeds of the momentum of light relative
to the lab. The first group observes this veloc-
ity equal to the speed of light, while the latter,

depending on whether the pulse is flying away
from the lab or towards it, is less or more than
the speed of light by the value u.
The speed of the laboratory u is found from the
equation

v′ − v =
v(1−u2

c2
)

1−uv
c2
− v = vu(v−u)

c2−uv = αv,

where α = 10−4. At this small α the velocity u ≃
αc2

v = 90 km
s . The velocity of the object relative to

the Earth is equal to the difference between the
velocity of the object approaching the laboratory
and the velocity of the laboratory, observed from
the Earth:
v0 = v′ = u = v · c

2−u2

c2−uv − u = v−u
1− vu

c2
≃ 100, 000 km

s

−90 km
s = 99, 910 km

s .

14.1.10

14.1.11 v = 2, 9 · 108 km
s .

14.1.12 u =
(v+ c

n )

(1+ v
nc )

.

14.1.13 T = 2nl

c(1− v2

c2
)
.

14.1.14 v = Lτc2

l(l+2L) (
√
1 + l3(l+2L)

(Lτc)2 −1); at l
τ ,

L
τ ≪ c we get

v = l2

(2Lτ) .

14.1.15 v0 =
(c2−vu−

√
(c2−v2)(c2−u2))

(v−u) .

14.1.16 N =
(1+2uv+

u2

c2
)

(1+ vu
c2

+u2

c2
)
.

14.1.17 The figure shows the trajectories of the light sig-
nal as observed from Earth and from the rocket.
The minimum distance between the rocket and
the Earth is the same for both observations and
is equal to l. Therefore, the return time of the
signal is equal to 2l

c for observations from the
Earth, and the return time is equal to 2l

c for ob-
servations from the rocket. observations from
the rocket, the return time is ( 2lc )·

1
cosα = 2l

c
√

1−β2
,

where β = v
c = sinα. Thus, the time interval be-

tween the departure and arrival of the light sig-
nal on the Earth increases when observing from
a rocket by 1√

1−β2
times.

14.1.18 Suppose the following happens. Several ob-
servers move near the Earth with different ve-
locities. A radar pulse reflected from one ob-
server has returned to the Earth. While this
pulse traveled, the hands of the clock at the
starting place made three complete revolutions,
during the second trip of the pulse the hands
made two more revolutions. Both the observer
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from whom the impulse was reflected and all
other observers will record the events: three
turns of the hands of the earth clock during the
first trip of the impulse and two turns of the
hands during the second trip. Each revolution
for any observer lasts the same amount of time.
Therefore, for all observers, the ratio of the du-
ration of the first and second journeys of the
pulse is equal to the ratio of the number of turns
of the hands of the clock 3 : 2. The above exam-
ple illustrates the independence of the ratio of
the ratio of times characterizing the events from
the speed of the observers.

14.1.19

14.1.20 The period of oscillations of light walkers irre-
spective of their orientation according to obser-
vations from the station will increase by 1√

1−β2

times, and therefore the walkers will ”walk”
in 1√

1−β2
times slower. To determine the dis-

tance between the mirrors l′ which is observed
from the station at the longitudinal walkers, we
define the period of oscillations of the walkers
through l′:
τ1 = l′

c(1+β) +
l′

c(1−β) =
2l′

c(1−β2)

This period of 1√
1−β2

times the period of the

walker oscillations 2l
c measured in the rocket.

So,
τ1 = 2l′

c(1−β2) =
2l

c
√

1−β2

It follows from the last equation that l′ =
l
√

1− β2. This means that the walkers and the
rocket, and the people in it, will ”flatten” by

1√
1−β2

times in the direction of velocity βc ac-
cording to observations from the Earth. Simi-
larly, everything will ”flatten” at the station ac-
cording to observations from the rocket. The
relative motion of the station introduces many
changes in the observed motion picture. The for-
mer simultaneity of events is broken, and the
clock on the station runs slower by 1√

1−β2
times,

and everything shrinks by a factor of 1√
1−β2

in
the direction of travel. But the ”flattened” peo-
ple at the station with their ”flattened” instru-
ments, using ”slowed down” time and incorrectly
determining simultaneity of events, they get,
measuring the relative speed of light flying away
from them, not the speed c − βc, but the speed
c. The light, which is flying towards them, ap-
proaches to them not with speed c+ βc, but, ac-
cording to their distorted measurements, at c.
So that would explain explain the difference in
measurements of the relative speed of light by

the observers on the rocket. But in the same
way. the observers at the station could also ex-
plain it, thinking that they were fine and that
the distortions are observed by the rocket guys.

14.1.21 In
√
1− u2

c2 + u2

v2 times

14.1.22 The speeds of the hares and Mazai are equal to
the previous speed of the fourth hare.

14.1.23 See Fig. λ+ = λ
2 , λ− = 2λ, λ⊥ = 5λ

4

14.1.24 N = (1+β)
2

14.1.25 δ ≃
√

∆
c

14.1.26 sinα1 = sinα+2β+β2sinα
1+2β sinα+β2

14.1.27 In a frame of reference that moves with velocity
u sinα in the direction opposite to the ship mo-
tion, the missile velocity vp is perpendicular to
the ship motion direction vk; vp and vk are de-
fined by the formulas
vp = u sinα

√
1− (uc )

2 cosα, vk = (v−u cosα).
(1− vu cosα

c2
)

In the reference frame in which the ship velocity
is zero, the components of the missile velocity v⊥
and v∥, perpendicular and parallel to the former
ship velocity vk, are defined by the formulas

v1 =
√
v2⊥ + v2∥ =

√
u2+v2−2vu cosα−( vuc )2 sin2 α.

(1− vu cosα
c2

) .

14.1.28 tgν = γtg(α2 ), γ = 1√
1−β2

.

14.2 Time dilation, shrinking bodies
in moving systems. systems.
Lorentz transformation .

14.2.1 2.5 times

14.2.2 v > c√
1+( τcl )2

14.2.3 ∆v = 6 · 104 km
s

14.2.4 ∆ν = 107 Hz

14.2.5 At a point moving at the speed of the wall,
the frequencies of the electromagnetic oscilla-
tions of the incident and reflected waves coin-
cide. Therefore, the frequency of the incident
wave ν is related to the frequency of the reflected
wave ν. the frequency of the reflected wave ν′ by
the equality
ν

(1+β) =
ν

(1−β) , ν
′ = ν(1−β)

(1+β) .
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14.2.6 At points traveling at wall velocity, the fre-
quency of electromagnetic oscillation of the wave
in the dielectric and outside the dielectric is the
same. Therefore, the frequency of the wave out-
side the dielectric ν is related to the frequency of
the wave inside the dielectric ν′ by the following
equality
ν
/ (1 + β) = ν′

(1+nβ) , ν − ν′ = (n−1)β
(1+nβ) .

14.2.7 τ =
l(1− vu

c2
)

v
√

1−u2

c2

14.2.8 In 5 · 104 years.

14.2.9

14.2.10 A pencil case moves towards the pencil with ve-
locity βc. The length of the pencil case is l

γ (γ =

1
√

1− β2) is γ2 times less than the length of the
pencil γl. At the moment when the bottom of the
pencil case reaches the front end of the pencil,
the bottom will stop. However, the open end of
the pencil case will move with velocity cβ until
the wave of ”stopping” sections of the pencil case,
coming from its bottom with velocity c

β , reaches
the open end. At this point, the length of the
pencil case is equal to the length of the pencil.
and the pencil case slams shut.

14.2.11

14.2.12 tgα = ββ1√
1−β2

1

.

14.2.13

14.2.14 ∆v =
cν2

0 (ν
2
1−ν

2
2 )

(ν2
1−ν2

0 )(ν
2
2−ν2

0 )

14.2.15

14.2.16 cos θ = (cosα+β)
(1+β cosα) , ν

′ = (1+β cosα)√
1−β2

.

14.2.17 a) τ = L
(v+u) , τ2 = τ1(1+vu)√

1−(uc )
2

b) τ1 = v
a (
√
1 + 2al

v2 − 1), τ2 =
τ1(1+

vaτ1
2c2

)√
1− v2

c2

14.2.18 The center of oscillation moves with velocity βc.
The coordinates of the body relative to the center
are related to time t′ by the following relations:
a) z′ = A

γ sin ωt′

γ (1 + βz′

ωc ); b) y′ = A sin ωt′

γ , γ =

1
√
1− β2.

14.3 Transformation of electric and
magnetic fields

14.3.1 The distance between the charges in the plates
will decrease by a factor of γ = 1√

1−β2
, which

will lead to an increase in the surface charge
density of each plate by a factor of γ.Therefore,
the electrical voltage will increase by a factor of
γ:
E′ = γE,B = βE′ = γβE

14.3.2 E⊥ = γ · E cosα,E∥ = E sinα,B = γβE cosα =

βE⊥, γ = 1
√

1− β2.

14.3.3 Er = 2γρ
r , Br = 2γβρ

r , where γ = 1√
1−β2

, r is the
distance to the thread.

14.3.4 a. ρe =
−ρ
γ , ρi = γρ, γ = 1√

1−β2

b. Will increase by a factor of γ
c. Different changes in the charge density of
electrons and ions during the movement of the
conductor leads to the appearance of an un-
compensated bulk charge density ρ′ = γρ−ρ

γ =

β2γρ.The electric field of this charge is E =
β2γρs
r , and the magnetic induction of a moving

conductor is B = βγρs
r , where s is the cross sec-

tion of the conductor, and r is the distance to its
axis. Therefore, E = βB.

14.3.5 a. ρi = γ1ρ, where γ1 = 1√
1−β2

1

. To determine
the electron density, we will go into a state of
motion with a velocity of β1c through an inter-
mediate state of motion with a velocity of βc,
in which the electrons are stationary and their
density is equal to ρ′e =

−ρ
γ , γ = 1

√
1− β2. Then,

informing the intermediate state of the velocity
β2c = c(β1−β)

(1−β1β)
, we move to the desired state in

which the electron density is determined by the
formula ρe =

ρ′e√
1−β2

2

= −γ1(1− ββ1)ρ.

b. Will increase by a factor of γ1.
c. E1 = β1B1.

14.3.6 a. E⃗ = −[β⃗ × B⃗].

b. In the moving state, the electric field E is
defined by the formula E = −[β⃗ × B⃗], where
B⃗′ is the magnetic field induction in the moving
state. At small βB⃗′ is close to B⃗ . Therefore,
E⃗ ≃ −[β⃗ × B⃗′].
c. Both explanations are valid. This means that
the absolute motion of the magnet cannot be de-
termined.

14.3.7 a. As a test body we choose a straight conduc-
tor, which is stationary in the initial state and
in which conduction electrons move with veloc-
ity βc. The density of electrons per unit length
of the conductor is −ρ, and the density of ions of
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the crystal lattice of the conductor is +ρ. There-
fore, the conductor is not charged and the elec-
tric field in the initial state does not act on it.
In the −βc moving state, the conduction elec-
trons are stationary and the ions are moving at
a velocity of −βc. The density of electrons in
the conductor will decrease by a factor of γ, and
the density of ions will increase by a factor of γ.
Therefore, the conductor will be charged after
the transformation with density γρ− ρ

γ = β2γρ,
and the force β2γρE will act on the unit length
of the conductor in the transverse direction from
the side of the electric field E. But the conductor
is moving without acceleration. This means that
the force on the electric field side E is compen-
sated by the force acting on the magnetic field
side: IB

c + β2γρE = 0, I = −γρβc is the current
in the conductor after conversion, B is the mag-
netic field perpendicular to both the conductor
and the electric field strength. It follows from
the last formula that the magnetic field B ap-
pears in the transformed system, related to the
electric field by the relation B⃗ = [β⃗ × E⃗].
b. In the transformed system (see problem a),
the magnetic field is defined by the formula B⃗ =
[β⃗×E⃗′], where E⃗′ is the electric field in the trans-
formed system. At low drift velocities, E⃗′ is close
to E⃗. Therefore, B⃗ ≃ [β⃗ × E⃗].

14.3.8

14.3.9 a) Increase by 1√
1−β2

times; b) Decrease in
1√
1−β2

times.

14.3.10 Increase by 1√
1−β2

times

14.3.11 Emax = Q

(R2
√

1−β2)
, σmax = Q

(4πR2
√

1−β2)
, σmin =

Q
(4πR2)

14.3.12 The figure shows a sphere around a stationary
charge and an ellipsoid arising from this sphere
when it is drifting together with the charge with
velocity βc. The minor axis of the ellipsoid is
in γ = 1√

1−β2
times smaller than the sphere.

On the surface of this ellipsoid there is an elec-
tric field, which used to be on the surface of the
sphere. The transverse component of this field
E⊥ increases by γ times, while the longitudi-
nal component E∥ does not change. Therefore,
the tangent of the angle between the new field
strength and the drift direction will increase by
a factor of γ. The tangent angle between the new
field strength and the drift direction times the
tangent of the angle of the radius vector. So the

electric field will still be directed along the ra-
dius vector. However, the strength of the new
field will depend not only on the the distance to
the charge r, but also on the angle α between
the direction of velocity βc and the radius vec-
tor r. For example, if we compare this strength
with the strength of a stationary charge, it will
will increase in the transverse direction by a fac-
tor of γ2 times, and in the longitudinal direction
it will decrease by γ3 times. For the other di-
rections, the intensity will be determined by the
formula
E⃗ = q

r3 ·
1−β2

(1−β2 sin2 α)
3
2
· r⃗.

There was no magnetic field in the initial state.
Therefore, the magnetic field induction is deter-
mined by the formula B⃗ = [β⃗ × E⃗].

14.3.13 When the system moves at a velocity of −βc,
the dielectric plate will stop and the capacitor
shells will move at a velocity of −βc. The den-
sities of surface charges on the linings will in-
crease by γ = 1√

1−β2
times and will be equal to

±γσ, where ±σ - densities of the surface charge
densities of the fixed capacitor shells. In ad-
dition, there will be a current with linear den-
sity ±γσβc. These surface charges and currents
will create inside the stationary dielectric elec-
tric voltage E′ = 4πγσ

ε and magnetic induction
B′ = +4πγβσ. The motion of the new sys-
tem with velocity βc returns it to its original
state. The electric and magnetic fields inside
the dielectric are determined by the field conver-
sion formulas, given in the condition of problem
14.3.8. a:
E = 4πσγ2( 1ε − β2), B = 4πσγ2β(1− 1

ε ).

14.3.14 The motion of the state with velocity −βc leads
to a state in which the stationary dielectric is
in a magnetic field of induction γB, γ = 1√

1−β2

and in an electric field of strength γβB. The
magnetic field has no effect on the dielectric,
but the electric field, which is perpendicular to
the plate, is weakened by a factor of ε : E′ =
γβB
ε . The motion of the new state with veloc-

ity βc returns the old state, whose electric field
is found by the electric field transformation for-
mula given in the condition of Problem 14.3.8.
a:E = γ2β(1 − 1

ε )B. The potential induced by
this field is U = Eh = γ2βhB(1− 1

ε ).

14.3.15 will increase in
√

(1+β)
(1−β) times.

14.3.16 Increase in (1+ β
n )√

(1−β2)
times

14.3.17 Will increase by a factor of (1+β)
(1−β) .
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14.3.18 Will increase by a factor of (1+β sinα)
(1−β sinα) .

14.3.19 Will increase in (1+ββ1)√
(1−β2

1)
times.

14.3.20 Increase in 1√
1−β2

times; ρ = βγj
c .

14.3.21 No

14.3.22 E = 4πγ[σ − j(t′ − x′β
c )] = 4π[γσ − jt′ + l′βγ2

c ].

14.3.23 The longitudinal field does not change during
motion. Only the place and time of its of its ap-
pearance. Electric field in a stationary capacitor
E = 4π(σ − jt). The electric field in a capacitor
moving with velocity βc,
E0 = 4π[σ − j(t′ − x′β

c )] = 4π(σ − j
γ t

′ + l′βγ
c ),

where l is the distance from the front plate, γ =
1√
1−β2

.

14.3.24 P = vM.

14.3.25 P = vM.

14.3.26 F± = 2µev
R3

±
, R± = e2

(2γmev2)

14.3.27

14.3.28 No. In a moving capacitor, the components of the
force F acting on the first plate along and across
the velocity are equal to
F∥ = QE cosα, F⊥ = QE sinα(1− β2),

and the components of acceleration are
a∥ = k cosα, a⊥ = k sinα, k = QE

√
1−β

M ,

where Q,M,E are respectively the charge, rest
mass and electric field inside the capacitor. This
acceleration is perpendicular to the plate, equal
in magnitude to the acceleration of the second
plate and is opposite to the acceleration of the
second plate. Therefore, the capacitor will not
rotate.

14.4 The motion of relativistic par-
ticles in electric and magnetic
fields magnetic and electric
fields

14.4.1 a) In a system moving with velocity βc, the time
interval between the two events - crossing of the
field boundary by the electron - will be in γ =

1√
1−β2

longer: T = γτ .

b) In the first case, during the time τ the mo-
mentum of the electron has changed by the value

2γmecβ, so τ = 2γmecβ
(eE) , where E is the elec-

tric voltage. In the second case, during the
time of motion T , the momentum of the elec-
tron has changed by the value γ1mecβ

(eE) , where
β1c = 2βc(1 + β2) - is the velocity of the elec-
tron after the field has acted on it. Therefore,
T = γτ .

14.4.2 In a frame of reference in which the field is sta-
tionary,

τ1 = 2mev1

eE

√
1− v21

c2

= τ
√
1− u2

c2 ,

and the velocity of the electron v1 = (v+u)
(1+ vu

c2
) .

Therefore
E = 2me(v+u)

[eτ(1−u2

c2
)
√

1− v2

c2
]
.

14.4.3 E = mev

(eτ
√

1− v2

c2
)
.

14.4.4 a) Will increase by a factor of 1
√

1− u2

c2 .

v′ =
√
v2 + u2 − v2u2

c2 .

b) Will increase by a factor of 1√
1−u2

c2

[1 + u
v (1 −√

1− u2

c2 ).

v′ = (v+u)
(1+ vu

c2
)

14.4.5 τ = me
e

v
E (

1√
1− 4v2

c2

− 1√
1− v2

c2

)

14.4.6 x = mec
2

eE .

14.4.7 p′ = p. In 1√
1−β2

times

14.4.8 v = c√
1+(mec

2R

e2z
)2
.

14.4.9 In 1
(1−β2) times. In

√
sin2α+ cos2α

(1−β2)2 times

14.4.10 v = c√
1+(mcω2qE )2

14.4.11 a) In a system moving with velocity βc, distances
are reduced by 1√

1−β2
times. l′ = l

√
1− β2. b)

In the first case
c2∆m = ( me√

1−β2
−me)c

2 = eEl, l = me
eE ( 1√

1−β2
−

1).

In the second case, the initially stationary elec-
tron, gaining velocity βc, passes the distance
l1 = mec

2

eE ( 1√
1−β2

− 1),

moving in the direction of the field. During this
time the field moves a distance ∆l = cβτ , where
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τ = mecβ

(eE
√

1−β2)
is the time for the electron to gain

the velocity βc. Therefore
l′ = l1 +∆l = me

eE (1−
√

1− β2) = l
√
1− β2.

14.4.12 E = mec
2√

1− v2

c2

(
1+uv

c2√
1− v2

c2

−
√
1− u2

c2 )

14.4.13 τ =

√
(2− lEl

mec2
)mel

eE

14.4.14 l = ε
eE = 1 km. τ = 1

eE

√
mπ0ε(2 +

ε
mπ0c2

) = 0.34
ms

14.4.15 2N2 = 1 = 2 · 106 times more than mec
2. In

k = 2N − ( 1
N ) ≃ 2000 times more the energy of

electrons in collisions.

14.4.16 tgαe = mec
2+E

2mec2+E
· 2mpc

2+E
mpc2+E

tgαp at αp ≪ 1, αe ≃
mec

2+E
2mec2+E

· 2mpc
2+E

mpc2+E
αp = 0.075 rad.

14.4.17 v1 = v
sin2α +

√
v2

cos2αsin
4α+ (mec

2

l )2 − mec
2

e .

14.4.18 ε =
√
(mpc2)2 + (eBR)2−mpc

2 = 4, 3MeV . εe =
80, 5 MeV

14.4.19 B = sinα
el ε(ε−mec

2) = 0, 04 T l, N ≃ 4%

14.4.20 Rp =
1
eB

√
ε2 − (mpc2)2 = 13 km; Re = 1

3 km.

14.4.21 ω = eB
mec(1+

eU
mec2

)

14.4.22 B = mec
2

(eR
√
N2−1

= 0, 28 T l

14.4.23 T = πmec
2

(eB
√

1−β2
.

14.4.24 T = πmec
2(1+ββ1)

eB(1+β2
1)
√

1−β2

14.4.25 ε =
√
(mec2)2 + (eBh)2 −mec

2 = 8.5 MeV.

14.4.26 l = mevc

eB
√

1− v2

c2

14.4.27 ε =
√
(mec2)2 + (eBR)2[1 + ( h

2πR )
2]−mec

2.

14.4.28 vdr = cEB

14.4.29 If a constant homogeneous magnetic field with
induction B =

√
1− k2, k = E

B , in which the elec-
tron rotates, moves with drift velocity kc, we ob-
tain a crossed field with magnetic induction B
and electric intensity E, in which the electron
makes drift motion. The maximum and mini-
mum velocities of the electron are defined by the
formulas
vmax = c β1+k

1+β1k
, vmin = βc = c β1−k

1−β1k

where β1c is the velocity of the electron in the
initial state. From the above equations we find
vmax = c [2k+(1+k2)β]

(1+k2+2kβ)

14.4.30 ev =
√
(mec2)2 + (hH)2 −mec

2

14.4.31 The electron velocity βc at the moment the field
is turned on is perpendicular to E and is the
sum of the rotational velocity β1c and the drift
velocity kc.k = E

B (see the solution of Problem
14.4.12). Therefore, β1 =

√
β2(1− k2) + k2, and

vmax = c (β1+k)
(1+β1k)

.

14.5 Law of conservation of mass and
momentum

14.5.1 m = M
2 .

14.5.2 m = W
c2 = 4, 4 τ

c

14.5.3 m1 = m
2 ,m0 =

m
√

1−β2

2 , E =
mc2(1−

√
1−β2)

2 .

14.5.4 m = (k + 1)mp, v = c
√

1− 1
k2

14.5.5 ε1 = c2(mp−me) = 938MeV , ε2 = c2 (mπ0−me)
2 =

67 MeV

14.5.6 M1 = M +m, p = mc

14.5.7 v = cm
(M−m)

14.5.8 v = cṁt
(M−ṁt) ,m0 =

√
ṁt(M − 2ṁt), t < M

(2m) .

14.5.9 M = m1 + m2, v =√
(m1v1)2+(m2v2)2+2m1m2v1v2 cosα

(m1+m2)
.

14.5.10 me = 0.51 MeV , mp = 939 MeV , mπ0 = 135
MeV , mψ = 2820 MeV

14.5.11 εK =
(ε−mπ0c

2

2 )

E = 152 MeV.

14.5.12 εK < 2mec
2(mπ0

4me
− 1)2.

14.5.13 εK = Mc2 −
√
(Mc2)2 − εe(εe + 2mec2)− E2

ν .

14.5.14

14.5.15 v = c · cosα2.

14.5.16 ε1 =
c2mπ0(mπ0+4mp)

(2mp)
, ε2 =

c2mψ(mψ+4mp)
(2mpε3)

=

6mpc
2.

14.5.17 ε =
2c2(m2

p−m
2
e)

me
, N = 2(

mp
me
− 1) = 3, 7 · 103

14.5.18 ε = mpc
2
√
1 + (1− m2

e

m2
p
)ctg2α2

14.5.19 a. v = m
M c,∆m = m. b. u > m

M c

14.5.20 εmax = ε[1− (mµ+me)
2

m2
π0

][1 +
√
1− (mπ0c2

E )2] = 4, 4

GeV ; Emin = 0

76



14.5.21 The range of neutrino energies is from zero to
1
2 (mµ − 2m2

e

mµ
)c2, the range of kinetic electron en-

ergies from zero to (mµ−me)2c2
(2mµ)

.

14.5.22 εmax = ε
ε+
√
ε2e+(mec2)2

2ε+εe−
√
ε2e−(mec2)2

14.5.23 mγ = m
1+mme(1−cosα) ,m

′
e = me +m−mγ .
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